コード例 #1
0
ファイル: test.py プロジェクト: xiaoye77/Face-Completion-GANs
def test(generator):
    filenames = ["1.jpg", "2.jpg", "3.jpg"]
    # orignal image for predict without mask
    for filename in filenames:
        img = process_image('test/' + filename)
        ## image for dreawing
        temp_img = process_image('test/' + filename)
        print("Testing ...")
        mask = erase_img(temp_img)

        img = np.expand_dims(img, 0)
        mask = np.expand_dims(mask, 0)

        completion_image = generator.predict([img, mask])

        # # Delete Batch dimension
        completion_image = np.squeeze(completion_image, 0)
        img = np.squeeze(img, 0)

        #cv2 show
        #completion_image = cv2.cvtColor(completion_image, cv2.COLOR_BGR2RGB)
        #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        plt.figure(figsize=(6, 3))
        plot_image(temp_img, 'Input', 1)
        plot_image(completion_image, 'Output', 2)
        plot_image(img, 'Ground Truth', 3)
        plt.savefig("result/" + filename.split('.')[0] + "_test")
        plt.show()

        # cv2.imshow("result",completion_image)
        # cv2.waitKey()
        print("Done.....")
コード例 #2
0
    def predict(self, image_path, topk, cat_to_name):
        """ Predict the class (or classes) of an image using a trained deep learning model. """

        # --- Load image to get prediction --------- 
        img_np = util.process_image(image_path)
        print("Getting prediction ... ", end="")

        # --- Convert image to tensor for prediction --------- 
        img_tensor = torch.from_numpy(img_np).type(torch.FloatTensor)
        img_tensor.unsqueeze_(0)

        # --- Get probabilities --------- 
        self.model.eval()

        with torch.no_grad():
            img_variable = Variable(img_tensor)
            log_ps = self.model(img_variable)

        ps = torch.exp(log_ps)
        top_ps, top_class = ps.topk(topk)
        top_ps = top_ps.detach().numpy().tolist()[0]
        top_class = top_class.detach().numpy().tolist()[0]

        # --- Convert indices to classes and invert --------- 
        idx_to_class = {val: key for key, val in self.class_to_idx.items()}

        top_labels = [idx_to_class[label] for label in top_class]
        top_flowers = [cat_to_name[idx_to_class[label]] for label in top_class]

        print("done!")
        return top_ps, top_labels, top_flowers
コード例 #3
0
ファイル: predict.py プロジェクト: to-n/aipnd-project
def predict(image_path, model, topk=5, device='cpu'):
    '''Predict the class (or classes) of an image using a trained deep learning model.
    '''
    print(f"Inferring using '{device}'...")
    model.to(device)

    # Retrieve file and covert to tensor
    input_im = torch.tensor(process_image(image_path)).type(torch.FloatTensor)

    # Retrieve label from input image path
    label_class = Path(image_path).parts[2]

    # Switch class mapping for convenience
    idx_to_class = {d:k for k,d in model.class_to_idx.items()}

    model.eval()

    with active_session():
        with torch.no_grad():
            input_im = input_im.to(device)
            logps = model(input_im.unsqueeze_(0))
            ps = torch.exp(logps)

            # Get top probabilities, indices
            top_p, top_idx = ps.topk(topk, dim=1)

            # Convert top indices to classes
            top_class = [idx_to_class[k] for k in top_idx.tolist()[0]]

            model.train()    
            input_im = input_im.squeeze().cpu()

            # Return top probabilities, corresponding classes, input image tensor, and correct label class
            return top_p.tolist()[0], top_class, input_im, label_class
コード例 #4
0
    def predict(self, image_path, topk=5, gpu=False):
        """
		Predict the class (or classes) of an image using a trained deep learning model.
		:param image_path:
		:param topk: the number of classes to return
		:param gpu: flag to use a GPU when predicting
		:return: tuple containing [0]the list of probabilities and [1]the list of classes
		"""
        # Setup Cuda
        device = torch.device(
            "cuda:0" if gpu and torch.cuda.is_available() else "cpu")
        self.model.to(device)

        # Make sure model is in eval mode
        self.model.eval()

        # Process image into numpy image, then convert to torch tensor
        np_image = process_image(image_path)
        torch_image = torch.from_numpy(np_image)
        torch_image = torch_image.to(device)

        with torch.no_grad():
            output = self.model(torch_image.unsqueeze_(0))
            probabilities = torch.exp(output)
            kprobs, kindex = probabilities.topk(topk)

        kprobs_list = kprobs[0].cpu().numpy().tolist()
        kindex_list = kindex[0].cpu().numpy().tolist()

        # For every kindex value, look up the class and return it instead of the index
        idx_to_class = {v: k for k, v in self.class_to_idx.items()}
        class_list = [idx_to_class[idx] for idx in kindex_list]

        return kprobs_list, class_list
コード例 #5
0
    def predict(self, image_path, top_k, cat_to_name_path):
        ''' Predict the class (or classes) of an image using a trained deep learning model.
        '''
        self.model.to(self.device)

        im = Image.open(image_path)
        im_tensor = util.process_image(im)
    #     print(im_tensor.shape)

        im_tensor.unsqueeze_(0)
#         print(im_tensor.shape)

#         log_ps = self.model.forward(im_tensor.float())
        im_tensor = im_tensor.to(self.device)
    
        # get probabilities without gradients
        with torch.no_grad():
            log_ps = self.model.forward(im_tensor.float())
        ps = torch.exp(log_ps)

        # get top probabilities
        top_probs, top_indexes = ps.topk(top_k)
    #     print(f'top_probs: {top_probs}') 
    #     print(f'top_indexes: {top_indexes}')      

        # flatten
        top_probs = top_probs.cpu().numpy().reshape(top_k,)
    #     print(f'top_probs: {top_probs}')

        top_indexes = top_indexes.cpu().numpy().reshape(top_k,)
    #     print(f'top_indexes: {top_indexes}')

        #print(f'model.class_to_idx: {model.class_to_idx}')

        idx_to_class = {v: str(k) for k, v in self.class_to_idx.items()}
        #print(f'idx_to_class: {idx_to_class}')

        top_classes = []
        for tc in top_indexes: top_classes.append(idx_to_class[tc])
            
        #[idx_to_class[tc] for tc in top_indexes.cpu().numpy()]
        
        # get class names
        class_to_name = util.read_json_file(cat_to_name_path)
        
        return top_probs, [class_to_name[tc] for tc in top_classes]
   
        
        
        
    
        
コード例 #6
0
def predict(image_path, model, k=5):
    image = Image.open(image_path)
    image = np.asarray(image)
    processed_image = process_image(image)
    processed_image = processed_image[np.newaxis]

    predictions_array = model.predict(processed_image)
    predictions_array = np.squeeze(predictions_array)
    top_k = np.argpartition(-predictions_array, k)[:k]

    classes = []
    for i in top_k:
        classes.append(i)

    return predictions_array[top_k], classes
コード例 #7
0
def predict():
    args = cli()

    device = torch.device("cuda" if args.gpu else "cpu")
    print(f'Device: {device}')

    image = process_image(args.image_path)
    model = load_model()

    with open(args.category_names, 'r') as f:
        cat_to_name = json.load(f)

    top_ps, top_class = _predict(model, image, args.top_k, device)

    for i, c in enumerate(top_class):
        print(f"Prediction {i + 1}: "
              f"{cat_to_name[c]} .. "
              f"({100.0 * top_ps[i]:.3f}%)")
コード例 #8
0
ファイル: predict.py プロジェクト: lubinlee/Image_Classifier
def predict(image_path, model, topk=5, device='cuda'):
    ''' Predict the class (or classes) of an image using a trained deep learning model.
    '''
    # : Implement the code to predict the class from an image file
    im = Image.open(image_path)
    processed_im = process_image(im).unsqueeze(0)
    model.to(device)
    model.eval()
    with torch.no_grad():
        processed_im = processed_im.to(device).float()
        output = model(processed_im)
        ps = torch.exp(output)
    pred = ps.topk(topk)
    flower_ids = pred[1][0].to('cpu')
    flower_ids = torch.Tensor.numpy(flower_ids)
    probs = pred[0][0].to('cpu')
    idx_to_class = {k: v for v, k in checkpoint['class_to_idx'].items()}
    flower_names = np.array([cat_to_name[idx_to_class[x]] for x in flower_ids])

    return probs, flower_names
コード例 #9
0
ファイル: predict.py プロジェクト: DougScalioni/Udacity
# Use GPU for inference:
gpu_enabled = results.gpu

with open('correction.json', 'r') as c:
    correct_index = json.load(c)

with open(category_names, 'r') as f:
    cat_to_name = json.load(f)

# Prediction
net = util.load_model(checkpoint)
device = torch.device(
    "cuda" if torch.cuda.is_available() and gpu_enabled else "cpu")

im = Image.open(image)
im = util.process_image(im)

net.model = net.model.double()
im = im.to(device)
logps = net.model(im)
ps = torch.exp(logps)
top_p, top_class = ps.topk(top_k)

index = []
probabilities = []
for i in range(len(top_class[0])):
    ind = str(top_class[0][i].item())
    ind = correct_index[ind]
    index.append(str(ind))

for j in range(len(top_p[0])):
コード例 #10
0
ファイル: predict.py プロジェクト: ricamos/ImageClassifier
parser.add_argument('--gpu', action='store_true', help='use gpu to infer classes')
parser.add_argument('--topk', action = 'store', dest = 'topk', type=int, default = 5, required = False, help = 'Return top K most likely classes')
parser.add_argument('--category_names', action='store', help='Label mapping file')

arguments = parser.parse_args()

try:
    # Use GPU if it's available
    #device = util.choose_device(arguments.gpu)
    
    #loads a checkpoint and rebuilds the model
    model = util.load_checkpoint(arguments.checkpoint_file)
    model.eval()
    
    #Image Preprocessing
    img_file = random.choice(os.listdir(arguments.img_path))
    image_path = arguments.img_path+img_file
    img = util.process_image(image_path)
    
    # Class Prediction
    probs, classes = util.predict(image_path, model, arguments.gpu, arguments.topk)
 
    # Sanity Checking
    cat_to_name = util.cat_to_name(classes, model, arguments.category_names)
    
    for i in range(len(cat_to_name)):
        print(f"class = {cat_to_name[i]} prob = {probs.data[0][i]:.3f}")
    #util.view_classify(image_path, probs, classes, cat_to_name)   
except Exception as e:
    logging.exception("Exception occurred")
    
コード例 #11
0
from PIL import ImageGrab, Image

import deep_q_agent

agent = deep_q_agent.Agent()
HOST = 'localhost'
PORT = 8080

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen()
conn, addr = s.accept()
print('Connected by', addr)
frame_count = 0

start_image = util.process_image(Image.open("images/start_image.png"))
start = ([start_image for _ in range(4)], 0
         )  # feed a list of blank images of a dummy checkpoint to start with

max_reward = 0
curr_reward = 0
eps_since_max = 0
ep = 0
images = []
images, agent.curr_checkpoint = start
last_act = np.array([[0, 0, 0, 0, 0]])
while True:
    frame_count = (frame_count + 1) % 1000000

    # Receive relevant data
    data = conn.recv(1024)
コード例 #12
0
ファイル: predict.py プロジェクト: lubinlee/Image_Classifier
    '--cat_to_name_json',
    type=str,
    help='Json file to load for class values to name conversion',
    default='cat_to_name.json')
args = parser.parse_args()

image_path = args.image_path
with open(args.cat_to_name_json, 'r') as f:
    cat_to_name = json.load(f)

# : Load Checkpoint
model, checkpoint = load_checkpoint(args.checkpoint)

# : Process a PIL image for use in a PyTorch model
im = Image.open(image_path)
processed_im = process_image(im)


def predict(image_path, model, topk=5, device='cuda'):
    ''' Predict the class (or classes) of an image using a trained deep learning model.
    '''
    # : Implement the code to predict the class from an image file
    im = Image.open(image_path)
    processed_im = process_image(im).unsqueeze(0)
    model.to(device)
    model.eval()
    with torch.no_grad():
        processed_im = processed_im.to(device).float()
        output = model(processed_im)
        ps = torch.exp(output)
    pred = ps.topk(topk)
コード例 #13
0

#Load the checkpoint and rebuild the model
checkpoint = torch.load(args.checkpoint)
model = classifier_util.construct_model(checkpoint['arch'], checkpoint['hidden_units'])
#Load the trained weights
model.load_state_dict(checkpoint['model_state'])
model.class_to_idx = checkpoint['classtoidx']

#Select the device used for inference (either CPU or GPU/cuda)
device = 'cuda' if args.gpu else 'cpu'
model.to(device)

#Convert a PIL image into an object that can be used as input to a trained model
image = Image.open(args.input)
image_processed = torch.from_numpy(util.process_image(image)).float().to(device)

#Feed the input image to the model and calculate the output probabilities
model.eval()
logprob = model.forward(image_processed.resize_(1, 3, 224, 224))
prob = torch.exp(logprob)
#Categories with top k probabilities
top_p, top_index = prob.topk(args.top_k)

#Translate indices to categories
mapping = model.class_to_idx
inverse_mapping = {ind: cls for cls, ind in mapping.items()}

top_prob = top_p.detach().cpu().numpy().squeeze()
top_index_list = top_index.cpu().numpy().squeeze().tolist()
コード例 #14
0
def build_model():
    optimizer = Adadelta()

    # build Completion Network model
    org_img = Input(shape=input_shape, dtype='float32')
    mask = Input(shape=(input_shape[0], input_shape[1], 1))

    generator, completion_out = model_generator(org_img, mask)
    completion_model = generator.compile(loss='mse', optimizer=optimizer)

    # build Discriminator model
    in_pts = Input(shape=(4, ), dtype='int32')  # [y1,x1,y2,x2]
    discriminator = model_discriminator(input_shape, local_shape)
    d_container = Network(inputs=[org_img, in_pts],
                          outputs=discriminator([org_img, in_pts]))
    d_out = d_container([org_img, in_pts])
    d_model = Model([org_img, in_pts], d_out)
    d_model.compile(loss='binary_crossentropy', optimizer=optimizer)
    d_container.trainable = False

    # build Discriminator & Completion Network models
    all_model = Model([org_img, mask, in_pts], [completion_out, d_out])
    all_model.compile(loss=['mse', 'binary_crossentropy'],
                      loss_weights=[1.0, alpha],
                      optimizer=optimizer)

    X_train = filenames[:5000]
    valid = np.ones((batch_size, 1))  ## label
    fake = np.zeros((batch_size, 1))  ## label

    for n in range(n_epoch):
        progbar = generic_utils.Progbar(len(X_train))
        for i in range(int(len(X_train) // batch_size)):
            X_batch = X_train[i * batch_size:(i + 1) * batch_size]
            inputs = np.array([
                process_image(filename, input_shape[:2])
                for filename in X_batch
            ])

            points, masks = get_points(batch_size)
            completion_image = generator.predict([inputs, masks])
            g_loss = 0.0
            d_loss = 0.0
            if n < tc:
                g_loss = generator.train_on_batch([inputs, masks], inputs)
            else:
                d_loss_real = d_model.train_on_batch([inputs, points], valid)
                d_loss_fake = d_model.train_on_batch(
                    [completion_image, points], fake)
                d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
                if n >= tc + td:
                    g_loss = all_model.train_on_batch([inputs, masks, points],
                                                      [inputs, valid])
                    g_loss = g_loss[0] + alpha * g_loss[1]
            progbar.add(inputs.shape[0],
                        values=[("Epoch", int(n + 1)), ("D loss", d_loss),
                                ("G mse", g_loss)])
        # show_image
        show_image(batch_size, n, inputs, masks, completion_image)
    # save model
    generator.save("model/generator.h5")
    discriminator.save("model/discriminator.h5")