コード例 #1
0
def quantize_process(model):

    #util.print_model_parameters(model)
    print(
        '---------------------- Before weight sharing ---------------------------'
    )
    criterion = nn.CrossEntropyLoss().cuda()
    acc = util.validate(args, test_loader, model, criterion)
    util.log(f"{args.save_dir}/{args.log}",
             f"accuracy before weight sharing\t{acc}")

    # Weight sharing
    old_weight_list, new_weight_list, quantized_index_list, quantized_center_list = apply_weight_sharing(
        model, args.model_mode, args.bits)

    print(
        '----------------------- After weight sharing ---------------------------'
    )
    acc = util.validate(args, test_loader, model, criterion)
    torch.save(model, f"{args.save_dir}/model_quantized.ptmodel")

    util.log(f"{args.save_dir}/{args.log}",
             f"weight\t{args.save_dir}/{args.out_quantized_folder}")
    util.log(f"{args.save_dir}/{args.log}",
             f"model\t{args.save_dir}/model_quantized.ptmodel")
    util.log(f"{args.save_dir}/{args.log}",
             f"accuracy after weight sharing {args.bits}bits\t{acc}")

    util.layer2torch(model, f"{args.save_dir}/{args.out_quantized_folder}")
    util.save_parameters(f"{args.save_dir}/{args.out_quantized_folder}",
                         new_weight_list)

    print(
        '----------------------- quantize retrain -------------------------------'
    )
    util.quantized_retrain(model, args, quantized_index_list,
                           quantized_center_list, train_loader, use_cuda)
    #acc = util.test(model, test_loader, use_cuda=True)
    acc = util.validate(args, test_loader, model, criterion)
    torch.save(
        model,
        f"{args.save_dir}/model_quantized_retrain{args.reepochs}.ptmodel")
    util.layer2torch(model, f"{args.save_dir}/{args.out_quantized_re_folder}")

    util.log(f"{args.save_dir}/{args.log}",
             f"weight\t{args.save_dir}/{args.out_quantized_re_folder}")
    util.log(
        f"{args.save_dir}/{args.log}",
        f"model\t{args.save_dir}/model_quantized_bit{args.bits}_retrain{args.reepochs}.ptmodel"
    )
    util.log(f"{args.save_dir}/{args.log}",
             f"accuracy retrain after weight sharing\t{acc}")

    weight_list = util.parameters2list(model.children())
    util.save_parameters(f"{args.save_dir}/{args.out_quantized_re_folder}",
                         weight_list)

    return model
コード例 #2
0
def quantize_process(model):
    print('------------------------------- accuracy before weight sharing ----------------------------------')
    acc = util.validate(val_loader, model, args)
    util.log(f"{args.save_dir}/{args.log}", f"accuracy before weight sharing\t{acc}")

    print('------------------------------- accuacy after weight sharing -------------------------------')
    
    tempfc1=torch.index_select(model.fc1.weight, 0, model.invrow1.cuda())
    model.fc1.weight=torch.nn.Parameter(torch.index_select(tempfc1, 1, model.invcol1.cuda()))
    tempfc2=torch.index_select(model.fc2.weight, 0, model.invrow2.cuda())
    model.fc2.weight=torch.nn.Parameter(torch.index_select(tempfc2, 1, model.invcol2.cuda()))
    tempfc3=torch.index_select(model.fc3.weight, 0, model.invrow3.cuda())
    model.fc3.weight=torch.nn.Parameter(torch.index_select(tempfc3, 1, model.invcol3.cuda()))
    
    old_weight_list, new_weight_list, quantized_index_list, quantized_center_list = apply_weight_sharing(model, args.model_mode, args.bits)
    
    temp1=torch.index_select(model.fc1.weight, 0, model.rowp1.cuda())
    model.fc1.weight=torch.nn.Parameter(torch.index_select(temp1, 1, model.colp1.cuda()))
    temp2=torch.index_select(model.fc2.weight, 0, model.rowp2.cuda())
    model.fc2.weight=torch.nn.Parameter(torch.index_select(temp2, 1, model.colp2.cuda()))
    temp3=torch.index_select(model.fc3.weight, 0, model.rowp3.cuda())
    model.fc3.weight=torch.nn.Parameter(torch.index_select(temp3, 1, model.colp3.cuda()))
    
    acc = util.validate(val_loader, model, args)
    util.save_checkpoint({
        'state_dict': model.state_dict(),
        'best_prec1': acc,
    }, True, filename=os.path.join(args.save_dir, 'checkpoint_{}_alpha_{}.tar'.format('quantized',args.alpha)))

    util.log(f"{args.save_dir}/{args.log}", f"weight\t{args.save_dir}/{args.out_quantized_folder}")
    util.log(f"{args.save_dir}/{args.log}", f"model\t{args.save_dir}/model_quantized.ptmodel")
    util.log(f"{args.save_dir}/{args.log}", f"accuracy after weight sharing {args.bits}bits\t{acc}")

    util.layer2torch(f"{args.save_dir}/{args.out_quantized_folder}" , model)
    util.save_parameters(f"{args.save_dir}/{args.out_quantized_folder}", new_weight_list)
    
    print('------------------------------- retraining -------------------------------------------')

    util.quantized_retrain(model, args, quantized_index_list, quantized_center_list, train_loader, val_loader)

    acc = util.validate(val_loader, model, args)
    util.save_checkpoint({
        'state_dict': model.state_dict(),
        'best_prec1': acc,
    }, True, filename=os.path.join(args.save_dir, 'checkpoint_{}_alpha_{}.tar'.format('quantized_re',args.alpha)))

    util.layer2torch(f"{args.save_dir}/{args.out_quantized_re_folder}" , model)

    util.log(f"{args.save_dir}/{args.log}", f"weight:{args.save_dir}/{args.out_quantized_re_folder}")
    util.log(f"{args.save_dir}/{args.log}", f"model:{args.save_dir}/model_quantized_bit{args.bits}_retrain{args.reepochs}.ptmodel")
    util.log(f"{args.save_dir}/{args.log}", f"acc after qauntize and retrain\t{acc}")

    weight_list = util.parameters2list(model.children())
    util.save_parameters(f"{args.save_dir}/{args.out_quantized_re_folder}", weight_list)
    return model
コード例 #3
0
def quantize_process(model):
    print(
        '------------------------------- accuracy before weight sharing ----------------------------------'
    )
    acc = util.validate(val_loader, model, args)
    util.log(f"{args.save_dir}/{args.log}",
             f"accuracy before weight sharing\t{acc}")

    print(
        '------------------------------- accuacy after weight sharing -------------------------------'
    )

    old_weight_list, new_weight_list, quantized_index_list, quantized_center_list = apply_weight_sharing(
        model, args.model_mode, args.bits)

    acc = util.validate(val_loader, model, args)

    util.log(f"{args.save_dir}/{args.log}",
             f"weight\t{args.save_dir}/{args.out_quantized_folder}")
    util.log(f"{args.save_dir}/{args.log}",
             f"model\t{args.save_dir}/model_quantized.ptmodel")
    util.log(f"{args.save_dir}/{args.log}",
             f"accuracy after weight sharing {args.bits}bits\t{acc}")

    util.layer2torch(f"{args.save_dir}/{args.out_quantized_folder}", model)
    util.save_parameters(f"{args.save_dir}/{args.out_quantized_folder}",
                         new_weight_list)

    print(
        '------------------------------- retraining -------------------------------------------'
    )

    util.quantized_retrain(model, args, quantized_index_list,
                           quantized_center_list, train_loader, val_loader)

    acc = util.validate(val_loader, model, args)
    util.layer2torch(f"{args.save_dir}/{args.out_quantized_re_folder}", model)

    util.log(f"{args.save_dir}/{args.log}",
             f"weight:{args.save_dir}/{args.out_quantized_re_folder}")
    util.log(
        f"{args.save_dir}/{args.log}",
        f"model:{args.save_dir}/model_quantized_retrain{args.reepochs}.ptmodel"
    )
    util.log(f"{args.save_dir}/{args.log}",
             f"acc after qauntize and retrain\t{acc}")

    weight_list = util.parameters2list(model.children())
    util.save_parameters(f"{args.save_dir}/{args.out_quantized_re_folder}",
                         weight_list)
    return model
コード例 #4
0
def quantize_process():
    util.topic_log("Accuracy before weight sharing")
    top1_acc, top5_acc = util.val_epoch(val_loader, model, args, topk=(1, 5))
    util.log(args.log_file_path,
             f"accuracy before weight sharing\t{top1_acc} ({top5_acc})")

    util.topic_log("Accuracy after weight sharing")
    layer_mame_to_quan_indices = apply_weight_sharing(model, args)
    top1_acc, top5_acc = util.val_epoch(val_loader, model, args, topk=(1, 5))
    util.save_masked_checkpoint(model, "quantized", top1_acc, "initial", args)
    util.log(
        args.log_file_path,
        f"accuracy after weight sharing {args.bits}bits\t{top1_acc} ({top5_acc})"
    )

    util.topic_log("Quantize retraining")
    util.quantized_retrain(model, args, layer_mame_to_quan_indices,
                           train_loader, val_loader)
    top1_acc, top5_acc = util.val_epoch(val_loader, model, args, topk=(1, 5))
    util.save_masked_checkpoint(model, "quantized", top1_acc, "end", args)
    util.log(args.log_file_path,
             f"accuracy after qauntize and retrain\t{top1_acc} ({top5_acc})")
def quantize_process(model):
    print(
        '------------------------------- accuracy before weight sharing ----------------------------------'
    )
    acc = util.validate(val_loader, model, args)
    util.log(f"{args.save_dir}/{args.log}",
             f"accuracy before weight sharing\t{acc}")

    print(
        '------------------------------- accuacy after weight sharing -------------------------------'
    )
    tempfc1 = torch.index_select(model.fc1.weight, 0, model.invrow1.cuda())
    model.fc1.weight = torch.nn.Parameter(
        torch.index_select(tempfc1, 1, model.invcol1.cuda()))
    tempfc2 = torch.index_select(model.fc2.weight, 0, model.invrow2.cuda())
    model.fc2.weight = torch.nn.Parameter(
        torch.index_select(tempfc2, 1, model.invcol2.cuda()))

    old_weight_list, new_weight_list, quantized_index_list, quantized_center_list = apply_weight_sharing(
        model, args.model_mode, args.bits)

    temp1 = torch.index_select(model.fc1.weight, 0, model.rowp1.cuda())
    model.fc1.weight = torch.nn.Parameter(
        torch.index_select(temp1, 1, model.colp1.cuda()))
    temp2 = torch.index_select(model.fc2.weight, 0, model.rowp2.cuda())
    model.fc2.weight = torch.nn.Parameter(
        torch.index_select(temp2, 1, model.colp2.cuda()))

    acc = util.validate(val_loader, model, args)

    torch.save(model, f"{args.save_dir}/model_quantized.ptmodel")

    util.log(f"{args.save_dir}/{args.log}",
             f"weight\t{args.save_dir}/{args.out_quantized_folder}")
    util.log(f"{args.save_dir}/{args.log}",
             f"model\t{args.save_dir}/model_quantized.ptmodel")
    util.log(f"{args.save_dir}/{args.log}",
             f"accuracy after weight sharing {args.bits}bits\t{acc}")

    util.layer2torch(f"{args.save_dir}/{args.out_quantized_folder}", model)
    util.save_parameters(f"{args.save_dir}/{args.out_quantized_folder}",
                         new_weight_list)

    print(
        '------------------------------- retraining -------------------------------------------'
    )

    util.quantized_retrain(model, args, quantized_index_list,
                           quantized_center_list, train_loader, val_loader)

    acc = util.validate(val_loader, model, args)
    torch.save(
        model,
        f"{args.save_dir}/model_quantized_retrain{args.reepochs}.ptmodel")
    util.layer2torch(f"{args.save_dir}/{args.out_quantized_re_folder}", model)

    util.log(f"{args.save_dir}/{args.log}",
             f"weight:{args.save_dir}/{args.out_quantized_re_folder}")
    util.log(
        f"{args.save_dir}/{args.log}",
        f"model:{args.save_dir}/model_quantized_retrain{args.reepochs}.ptmodel"
    )
    util.log(f"{args.save_dir}/{args.log}",
             f"acc after qauntize and retrain\t{acc}")

    weight_list = util.parameters2list(model.children())
    util.save_parameters(f"{args.save_dir}/{args.out_quantized_re_folder}",
                         weight_list)
    return model