def main(): runman = RunManager() # Choose initialState, either from user-inputted parameters or randomly if len(sys.argv) > 1: initialState = [eval(xx) for xx in sys.argv[1].split()] else: initialState = randUniformPoint(SineModel5.typicalRanges) runman.explore_dimensions(initialState, SineModel5.typicalRanges, pointsPerDim = 9, repetitions = 2)
def main(): runman = RunManager() # Choose initialState, either from user-inputted parameters or randomly if len(sys.argv) > 1: initialState = [eval(xx) for xx in sys.argv[1].split()] else: initialState = randUniformPoint(SineModel5.typicalRanges) runman.explore_dimensions(initialState, SineModel5.typicalRanges, pointsPerDim=9, repetitions=2)
def doRun(): runman = RunManager() # Choose initialState, either from user-inputted parameters or randomly neatFile = None if len(sys.argv) > 1: if (len(sys.argv) > 2 and sys.argv[1] == '-simplex' or sys.argv[1] == '-svm'): # Simplex filename import pickle filename = sys.argv[2] ff = open(filename, 'r') strategy = pickle.load(ff) ff.close() elif (len(sys.argv) > 2 and sys.argv[1] == '-neat'): neatFile = sys.argv[2] currentState = None elif (len(sys.argv) > 2 and sys.argv[1] == '-filt'): filtFile = sys.argv[2] currentState = None else: # normal currentState = [eval(xx) for xx in sys.argv[1].split()] else: currentState = randUniformPoint(SineModel5.typicalRanges) try: strategy except: #strategy = UniformStrategy(currentState, SineModel5.typicalRanges) #strategy = GaussianStrategy(currentState, SineModel5.typicalRanges) #strategy = GradientSampleStrategy(currentState) #strategy = LinearRegressionStrategy(currentState) #strategy = SimplexStrategy(currentState, SineModel5.typicalRanges) strategy = RandomStrategy(currentState, SineModel5.typicalRanges) #strategy = SVMLearningStrategy(currentState, SineModel5.typicalRanges) #strategy = NEATStrategy(currentState, SineModel5.typicalRanges, neatFile = neatFile) # these args aren't used #strategy = FileStrategy(filtFile = filtFile) #runman.do_many_runs(currentState, lambda state: Neighbor.gaussian(SineModel5.typicalRanges, state)) #runman.do_many_runs(currentState, lambda state: gradient_search(SineModel5.typicalRanges, state)) runman.do_many_runs(strategy, SineModel5.typicalRanges)
def doRun(): runman = RunManager() # Choose initialState, either from user-inputted parameters or randomly neatFile = None if len(sys.argv) > 1: if (len(sys.argv) > 2 and sys.argv[1] == '-simplex' or sys.argv[1] == '-svm'): # Simplex filename import pickle filename = sys.argv[2] ff = open(filename, 'r') strategy = pickle.load(ff) ff.close() elif (len(sys.argv) > 2 and sys.argv[1] == '-neat'): neatFile = sys.argv[2] currentState = None elif (len(sys.argv) > 2 and sys.argv[1] == '-filt'): filtFile = sys.argv[2] currentState = None else: # normal currentState = [eval(xx) for xx in sys.argv[1].split()] else: currentState = randUniformPoint(SineModel5.typicalRanges) try: strategy except: #strategy = UniformStrategy(currentState, SineModel5.typicalRanges) strategy = GaussianStrategy(currentState, SineModel5.typicalRanges) #strategy = GradientSampleStrategy(currentState) #strategy = LinearRegressionStrategy(currentState) #strategy = SimplexStrategy(currentState, SineModel5.typicalRanges) #strategy = RandomStrategy(currentState, SineModel5.typicalRanges) #strategy = SVMLearningStrategy(currentState, SineModel5.typicalRanges) #strategy = NEATStrategy(currentState, SineModel5.typicalRanges, neatFile = neatFile) # these args aren't used #strategy = FileStrategy(filtFile = filtFile) #runman.do_many_runs(currentState, lambda state: Neighbor.gaussian(SineModel5.typicalRanges, state)) #runman.do_many_runs(currentState, lambda state: gradient_search(SineModel5.typicalRanges, state)) runman.do_many_runs(strategy, SineModel5.typicalRanges)