image = china[150:220, 130:250] height, width, channels = image.shape image_grayscale = image.mean(axis=2).astype(np.float32) images = image_grayscale.reshape(1, height, width, 1) fmap = np.zeros(shape=(7, 7, 1, 2), dtype=np.float32) fmap[:, 3, 0, 0] = 1 fmap[3, :, 0, 1] = 1 plot_image(fmap[:, :, 0, 0]) plt.show() plot_image(fmap[:, :, 0, 1]) plt.show() reset_graph() X = tf.placeholder(tf.float32, shape=(None, height, width, 1)) feature_maps = tf.constant(fmap) convolution = tf.nn.conv2d(X, feature_maps, strides=[1, 1, 1, 1], padding="SAME") # with tf.Session() as sess: # output = convolution.eval(feed_dict={X: images}) # # plot_image(images[0, :, :, 0]) # save_fig("china_original", tight_layout=False) # plt.show()
print('slope: ' + str(slope)) print('y_intercept: ' + str(y_intercept)) best_fit = [] for i in x_vals: best_fit.append(slope * i + y_intercept) # Plot the results plt.plot(x_vals, y_vals, 'o', label='Data') plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3) plt.legend(loc='upper left') plt.show() util.reset_graph() A = tf.constant(np.column_stack((x_vals_column, ones_column))) b = tf.constant(np.transpose(np.matrix(y_vals))) with tf.Session() as sess: tA_A = tf.matmul(tf.transpose(A), A) L = tf.cholesky(tA_A) tA_b = tf.matmul(tf.transpose(A), b) sol1 = tf.matrix_solve(L, tA_b) sol2 = tf.matrix_solve(tf.transpose(L), sol1) solution_eval = sess.run(sol2) # Extract coefficients slope = solution_eval[0][0] y_intercept = solution_eval[1][0]
def reg(loss_func='l2', learn_rate=0.01, max_iter=100, batch_size=32): util.reset_graph() with tf.Session() as sess: x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) A = tf.Variable(tf.random_normal(shape=[1, 1])) b = tf.Variable(tf.random_normal(shape=[1, 1])) # y = Ax + b model_output = tf.add(tf.matmul(x_data, A), b) if loss_func == 'l2': loss = tf.reduce_mean(tf.square(y_target - model_output)) elif loss_func == 'l1': loss = tf.reduce_mean(tf.abs(y_target - model_output)) elif loss_func == 'lasso': lasso_param = tf.constant(0.9) heavyside_step = tf.truediv( 1., tf.add(1., tf.exp(tf.multiply(-100., tf.subtract(A, lasso_param))))) regularization_param = tf.multiply(heavyside_step, 99.) loss = tf.add(tf.reduce_mean(tf.square(y_target - model_output)), regularization_param) elif loss_func == 'ridge': ridge_param = tf.constant(1.) ridge_loss = tf.reduce_mean(tf.square(A)) loss = tf.expand_dims( tf.add(tf.reduce_mean(tf.square(y_target - model_output)), tf.multiply(ridge_param, ridge_loss)), 0) my_opt = tf.train.GradientDescentOptimizer(learn_rate) train_step = my_opt.minimize(loss) init = tf.global_variables_initializer() init.run() loss_vec = [] for i in range(max_iter): rand_index = np.random.choice(len(x_vals), size=batch_size) rand_x = np.transpose([x_vals[rand_index]]) rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={ x_data: rand_x, y_target: rand_y }) if loss_func == 'l1' or loss_func == 'l2': loss_vec.append(temp_loss) else: loss_vec.append(temp_loss[0]) if (i + 1) % 50 == 0: print('Step #' + str(i + 1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b))) print('Loss = ' + str(temp_loss)) [slope] = sess.run(A) [y_intercept] = sess.run(b) # Get best fit line best_fit = [] for i in x_vals: best_fit.append(slope * i + y_intercept) # Plot the result plt.plot(x_vals, y_vals, 'o', label='Data Points') plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3) plt.legend(loc='upper left') plt.title('Sepal Length vs Pedal Width') plt.xlabel('Pedal Width') plt.ylabel('Sepal Length') plt.show() # Plot loss over time plt.plot(loss_vec, 'k-') plt.title('L2 Loss per Generation') plt.xlabel('Generation') plt.ylabel('L2 Loss') plt.show()