コード例 #1
0
ファイル: pf.py プロジェクト: jackdbrowne/int-robot
    def update_particle_cloud(self, scan):
    	#remove NaN and inf values
    	scan.ranges = scan_filter(scan.ranges, self.sensor_model.scan_range_max)
        
        if len(scan.ranges) > 0:
	        weights = [self.sensor_model.get_weight(scan, pose) for pose in self.particlecloud.poses]
	else:
		print "Error: Scan ranges null"
		return
    	
    	# used for finding how confident you are in the weights - decay the weight average
        w_avg = mean(weights)
        self.slow_decay += 0.001 * (w_avg - self.slow_decay)
        self.fast_decay += 0.1 * (w_avg - self.fast_decay)

        breakpoints=cumsum(weights)
        
    	maximum = max(breakpoints)
    	  
    	# the probability of the weights being okay
 	prob = max(0.0, 1.0 - (self.fast_decay/self.slow_decay))   	   
    	if not prob == 0:
	    	loops = int(len(self.particlecloud.poses) * prob)
    	else:
    		loops = 0

        # Update particlecloud, given map and laser scan
       	pose_arr = PoseArray()
        for i in range(0,len(self.particlecloud.poses)):
            new_pose = Pose()
            # add completely random noise to re-localise
            if i < loops:                                   
            	# 33.1 and 31.95 being the x and y sizes of the map respectively
                new_pose.position.x = uniform(0, 33.1)
                new_pose.position.y = uniform(0,31.95)
                new_pose.orientation = rotateQuaternion(Quaternion(w=1), uniform(0, math.pi*2)) 
            # otherwise use roulette wheel resampling to resample
            else:
            	# make a random pick
		pick = uniform(0, maximum)
		# an nlogn implementation of the roulette wheel search - by splitting sorted list in half repeatedly
		i = bisect.bisect(breakpoints, pick)
		choice = self.particlecloud.poses[i]
		position = choice.position
		orientation = choice.orientation
		
		# add resampling noise to cope with changes in odometry
		new_pose.position.x = gauss(position.x, 0.05)
		new_pose.position.y = gauss(position.y, 0.05)
		rotation = gauss(0, 0.125)
		new_pose.orientation = rotateQuaternion(orientation, rotation)
		new_pose.orientation = orientation
		
	    pose_arr.poses.append(new_pose)
	
	self.particlecloud = pose_arr		
コード例 #2
0
ファイル: pf.py プロジェクト: imattacus/robots_exercise2
    def initialise_particle_cloud(self, initialpose):
        rospy.loginfo("initialise_particle_cloud")
        # Set particle cloud to initialpose plus noise
        new_poses = PoseArray()
        new_poses.header.frame_id = 0  # ?
        new_poses.header.stamp = rospy.Time.now()
        x_var = initialpose.pose.covariance[6 * 0 + 0]
        y_var = initialpose.pose.covariance[6 * 1 + 1]
        rot_var = initialpose.pose.covariance[6 * 5 + 5]

        for i in range(self.INITIAL_PARTICLE_COUNT):
            new_pose = Pose()
            new_pose.position.x = gauss(mu=initialpose.pose.pose.position.x,
                                        sigma=x_var)
            new_pose.position.y = gauss(mu=initialpose.pose.pose.position.y,
                                        sigma=y_var)
            new_pose.orientation = rotateQuaternion(
                q_orig=initialpose.pose.pose.orientation,
                yaw=gauss(mu=0, sigma=rot_var))

            new_poses.poses.append(new_pose)

        new_poses = self.topup_poses_with_random(new_poses)

        return new_poses
コード例 #3
0
    def initialise_particle_cloud(self, initialpose):
        #Set particle cloud to initialpose plus noise
        noise = 1
        #create an array of Poses
        posArray = PoseArray()

        #iterate over the number of particles and append to PosArray
        for x in range(0, self.NUMBER_PREDICTED_READINGS):
            pose = Pose()

            pose.position.x = random.gauss(initialpose.pose.pose.position.x,
                                           noise)
            pose.position.y = random.gauss(initialpose.pose.pose.position.y,
                                           noise)
            pose.position.z = 0

            #TODO:reconfig the parameters
            pose.orientation = rotateQuaternion(
                initialpose.pose.pose.orientation,
                math.radians(random.gauss(0, 30)))

            posArray.poses.extend([pose])

        #print posArray
        return posArray
コード例 #4
0
ファイル: pf.py プロジェクト: imattacus/robots_exercise2
    def update_particle_cloud(self, scan):
        scan.ranges = np.fromiter(
            (0.0 if np.isnan(r) else r for r in scan.ranges), float)

        # Update particlecloud, given map and laser scan
        self.particlecloud.poses = [
            particle for particle in self.particlecloud.poses
            if not self.map_cell_occupied(particle)
        ]
        weights = np.fromiter((self.sensor_model.get_weight(scan, pose)
                               for pose in self.particlecloud.poses), float)

        new_poses = self.resample(self.particlecloud.poses, weights,
                                  self.RESAMPLE_PARTICLE_COUNT)

        self.particlecloud.poses = new_poses
        self.particlecloud = self.topup_poses_with_random(self.particlecloud)

        # TODO: what should these actually be?
        x_var = 0.05
        y_var = 0.05
        rot_var = 0.05

        for pose in self.particlecloud.poses:
            pose.position.x = gauss(mu=pose.position.x, sigma=x_var)
            pose.position.y = gauss(mu=pose.position.y, sigma=y_var)
            pose.orientation = rotateQuaternion(q_orig=pose.orientation,
                                                yaw=gauss(mu=0, sigma=rot_var))
コード例 #5
0
    def update_particle_cloud(self, scan):
        """
        This should use the supplied laser scan to update the current
        particle cloud. i.e. self.particlecloud should be updated.
        
        :Args:
            | scan (sensor_msgs.msg.LaserScan): laser scan to use for update

         """
        self._latest_scan = scan
        #print(scan)
        #print("Entering update ",len(self.particlecloud.poses))
        self.weighted_dist = OrderedDict(
        )  #set up an ordered dictionary of the cumulative weights as the key and the particles as the value
        cumulative_weight = 0
        for particle in self.particlecloud.poses:
            #print(scan)
            #print(self.sensor_model.get_weight(scan,particle))
            self.weighted_dist[self.sensor_model.get_weight(scan, particle) +
                               cumulative_weight] = particle
            cumulative_weight += self.sensor_model.get_weight(scan, particle)

        new_PC = PoseArray()
        choice = 0
        increment = cumulative_weight / self.NUMBER_PREDICTED_READINGS  #choose increment for resampling
        #print("choice", choice, "cumulative weight", cumulative_weight)
        while (choice < cumulative_weight):
            random_choice = np.random.uniform(0, 1, 1)
            #print("random choice",random_choice)
            p = Pose()
            sampled_particle = self.choose(choice)  #get the resampled particle
            if (random_choice < 0.9):
                p.position.x = sampled_particle.position.x
                p.position.y = sampled_particle.position.y
                p.position.z = sampled_particle.position.z
                p.orientation = sampled_particle.orientation
            #print("0.95")
            #print("0.95 ",p.position.x)
            else:
                xNoise = self.ODOM_TRANSLATION_NOISE * np.random.normal(
                    0, 0.5
                )  #with a small probability generate a sample further away to deal with the kidnapped robot problem
                yNoise = self.ODOM_DRIFT_NOISE * np.random.normal(0, 0.5)
                zNoise = 0
                random_angular_noise = self.ODOM_ROTATION_NOISE * np.random.normal(
                    0, 0.3)

                p.position.x = sampled_particle.position.x  # + xNoise		#pose positions+noise
                p.position.y = sampled_particle.position.y  #+ yNoise
                p.position.z = sampled_particle.position.z  #+ zNoise
                p.orientation = rotateQuaternion(sampled_particle.orientation,
                                                 0)  #random_angular_noise)

                #print("0.05")
                #print("0.05 ",p.position.x)
            #print("Appending to new_PC ",p.position.x)
            new_PC.poses.append(p)  #add particle to new particle cloud
            choice = choice + increment  #increment for next resampled particle
#print("Length of new particle cloud ", len(new_PC.poses))
        self.particlecloud = new_PC  #set new particle cloud
コード例 #6
0
def systematic_resampling(S, W):
    # cumulative density function
    cdf = []
    # keep track of running total
    cdf_counter = 0
    # create cdf entry for each sample
    for (p, w) in S:
        cdf.append((p, cdf_counter + w / W))
        cdf_counter += w / W
    U = random.uniform(0, 1 / len(S))
    counter = 0
    S_n = PoseArray()
    for j in range(0, len(S)):
        while U > cdf[counter][1]:
            counter += 1
        new_particle = Pose()
        new_particle.position.x = cdf[counter][0].position.x + random.gauss(
            0, 0.1)
        new_particle.position.y = cdf[counter][0].position.y + random.gauss(
            0, 0.1)
        new_particle.orientation = rotateQuaternion(
            Quaternion(w=1),
            getHeading(cdf[counter][0].orientation) + random.gauss(0, 0.05))
        S_n.poses.append(new_particle)
        U += (1 / len(S))

    return S_n
コード例 #7
0
    def initialise_particle_cloud(self, initialpose):
        """
        Set particle cloud to initialpose plus noise

        Called whenever an initialpose message is received (to change the
        starting location of the robot), or a new occupancy_map is received.
        self.particlecloud can be initialised here. Initial pose of the robot
        is also set here.
        
        :Args:
            | initialpose: the initial pose estimate
        :Return:
            | (geometry_msgs.msg.PoseArray) poses of the particles
        """
        SPREAD = 10
        result = PoseArray()
        self.weights = []

        for i in range(self.NUMBER_OF_PARTICLES):
            new_point = Pose()
            new_point.position.x = initialpose.pose.pose.position.x + random.uniform(
                -SPREAD, SPREAD)
            new_point.position.y = initialpose.pose.pose.position.y + random.uniform(
                -SPREAD, SPREAD)

            new_point.orientation = util.rotateQuaternion(
                initialpose.pose.pose.orientation,
                random.uniform(-math.pi, math.pi))
            result.poses.append(new_point)
            self.weights.append(1.0)
        return result
コード例 #8
0
    def weighted_zscore(self):

        result = Pose()
        sin_rotation = 0.0
        cos_rotation = 0.0
        total = 0.0
        for i in range(self.NUMBER_OF_PARTICLES):
            total += self.weights[i]
        j = 0
        for i in self.particlecloud.poses:
            result.position.x += i.position.x * self.weights[j] / total
            result.position.y += i.position.y * self.weights[j] / total
            theta = util.getHeading(i.orientation) * self.weights[j] / total
            sin_rotation += math.sin(theta) * self.weights[j] / total
            cos_rotation += math.cos(theta) * self.weights[j] / total
            j += 1
        rotation = math.atan2(sin_rotation, cos_rotation)
        result.orientation = util.rotateQuaternion(Quaternion(w=1.0), rotation)
        dist = []
        for i in self.particlecloud.poses:
            x = (i.position.x - result.position.x)**2 + (i.position.y -
                                                         result.position.y)**2
            dist.append(math.sqrt(x))
        dist = np.array(dist)
        zscore = stats.zscore(dist)
        result = Pose()
        sin_rotation = 0.0
        cos_rotation = 0.0
        total = 0.0
        #print(zscore)
        for i in range(self.NUMBER_OF_PARTICLES):
            if zscore[i] < 0.7 and zscore[i] > -0.7:
                result.position.x += self.particlecloud.poses[i].position.x
                result.position.y += self.particlecloud.poses[i].position.y
                theta = util.getHeading(
                    self.particlecloud.poses[i].orientation)
                sin_rotation += math.sin(theta)
                cos_rotation += math.cos(theta)
                total += 1.0
        print(self.NUMBER_OF_PARTICLES)
        print(total)
        result.position.x /= total
        result.position.y /= total
        rotation = math.atan2(sin_rotation / total, cos_rotation / total)
        result.orientation = util.rotateQuaternion(Quaternion(w=1.0), rotation)

        return result
コード例 #9
0
	def update_non_amcl(self, scan, pf):

		self.weight_particles(scan, pf)
		
		resampledPoses = []
		notAccepted = True
		numParticles = len(pf.particlecloud.poses)

		#Resamples the poses
		for i in range(0,numParticles):
			notAccepted = True
			while (notAccepted):
				index = random.randint(0,numParticles-1)
				posX = pf.particlecloud.poses[index].position.x
				posY = pf.particlecloud.poses[index].position.y
				if (random.uniform(0,1) < particleWeights[index]/totalWeight):
					notAccepted = False
			resampledPoses.append(pf.particlecloud.poses[index])

		cont = True
		pArray = PoseArray()
		temp = []
		val = Pose()
		count = 0

		#Smudges the poses
		while cont:
			temp = []
			val = resampledPoses[0]
			count = 0

			#Removes the duplicate poses from the list
			for i in range(0, len(resampledPoses)):
				if (resampledPoses[i] == val):
					count = count + 1
				else:
					temp.append(resampledPoses[i])

			resampledPoses = temp

			#Checks that we have allocated all particles to be smudged
			if (len(resampledPoses) == 0):
				cont = False
				
			#Apply smuding to all but one of the same resampled particle
			for i in range(0, count):
				if i > 0:
					newPose = Pose()
					newPose.position.x = random.gauss(val.position.x, 0.3) #TEST THIS
					newPose.position.y = random.gauss(val.position.y, 0.3)
					newPose.orientation = rotateQuaternion(val.orientation, random.vonmisesvariate(0, 4))
					 #MAKE SURE TO TEST
					pArray.poses.append(newPose)
					
				else:
					pArray.poses.append(val)
			
		return pArray
コード例 #10
0
 def new_pose_with_error(self, pose, scan, position_noise, turn_noise=1.0):
     on_map = True
     newpose = Pose()
     newpose = copy.deepcopy(pose)
     newpose.position.x += gauss(0, 1) * position_noise
     newpose.position.y += gauss(0, 1) * position_noise
     newpose.orientation = rotateQuaternion(newpose.orientation,
                                            gauss(0, 1) * turn_noise)
     return newpose
コード例 #11
0
    def update_particle_cloud(self, scan):
        """
        This should use the supplied laser scan to update the current
        particle cloud. i.e. self.particlecloud should be updated.
        
        :Args:
            | scan (sensor_msgs.msg.LaserScan): laser scan to use for update

         """
        self.scan = scan
        movement_particles = []

        dtime = rospy.Time.now().to_sec() - self.last_time.to_sec()
        self.last_time = rospy.Time.now()

        for i in self.particlecloud.poses:
            x = i.position.x
            y = i.position.y
            theta = util.getHeading(i.orientation)
            for j in range(4):
                p = Pose()

                p.position.x = x + random.uniform(-0.2, 0.2)
                p.position.y = y + random.uniform(-0.2, 0.2)
                p.position.z = 0

                thetad = theta + random.uniform(-0.4, 0.4)
                p.orientation = util.rotateQuaternion(Quaternion(w=1.0),
                                                      thetad)

                probn = self.sensor_model.get_weight(scan, p)**2
                movement_particles.append((probn, p))
        w_avg = 0.0
        for x in movement_particles:
            w_avg += x[0] / len(movement_particles)

        self.w_slow += self.A_SLOW * (w_avg - self.w_slow)
        self.w_fast += self.A_FAST * (w_avg - self.w_fast)

        particlecloudnew = PoseArray()
        weights = np.asarray([i[0] for i in movement_particles]).cumsum()

        new_weights = []
        for i in range(self.NUMBER_OF_PARTICLES):
            j = random.random() * w_avg * len(movement_particles)
            index = np.searchsorted(weights, j)
            pose = movement_particles[index][1]
            weight = movement_particles[index][0]
            if random.random() > (self.w_fast / self.w_slow):
                pose = self.generate_random_map_pose()
                weight = 0.0

            particlecloudnew.poses.append(pose)
            new_weights.append(weight)
        self.particlecloud.poses = particlecloudnew.poses
        self.weights = new_weights
コード例 #12
0
ファイル: pf_base.py プロジェクト: snowhong/backup
    def __init__(self):
        #POSE RECORDE

        self.pre_st_x=0
        self.pre_st_y=0
        self.pre_st_w=0
        
        self._pre_pose = Pose()
        self._pre_pose.position.x = 0
        self._pre_pose.position.y = 0
        self._pre_pose.position.z = 0
        self._pre_pose.orientation.x = 0
        self._pre_pose.orientation.y = 0
        self._pre_pose.orientation.z = 0
        self._pre_pose.orientation.w = 0

        # Initialise fields
        self.estimatedpose =  PoseWithCovarianceStamped()
        self.occupancy_map = OccupancyGrid()
        self.particlecloud =  PoseArray()
        self.tf_message = tfMessage()
        
        self._update_lock =  Lock()
        
        # Parameters
        self.ODOM_ROTATION_NOISE = 0 		# Odometry model rotation noise
        self.ODOM_TRANSLATION_NOISE = 0 	# Odometry x axis (forward) noise
        self.ODOM_DRIFT_NOISE = 0 			# Odometry y axis (side-side) noise
        self.NUMBER_PREDICTED_READINGS = 20
    
        # Set 'previous' translation to origin
        # All Transforms are given relative to 0,0,0, not in absolute coords.
        self.prev_odom_x  = 0.0 # Previous odometry translation from origin
        self.prev_odom_y = 0.0  # Previous odometry translation from origin
        self.prev_odom_heading = 0.0 # Previous heading from odometry data
        self.last_odom_pose = None
        
        # Request robot's initial odometry values to be recorded in prev_odom
        self.odom_initialised = False
        self.sensor_model_initialised = False

        # Set default initial pose to initial position and orientation.
        self.estimatedpose.pose.pose.position.x = self.INIT_X
        self.estimatedpose.pose.pose.position.y = self.INIT_Y
        self.estimatedpose.pose.pose.position.z = self.INIT_Z
        self.estimatedpose.pose.pose.orientation = rotateQuaternion(Quaternion(w=1.0),
                                                                    self.INIT_HEADING)
        # NOTE: Currently not making use of covariance matrix
        
        self.estimatedpose.header.frame_id = "/map"
        self.particlecloud.header.frame_id = "/map"
        
        # Sensor model
        self.sensor_model =  sensor_model.SensorModel()
コード例 #13
0
    def __init__(self):
        #POSE RECORDE

        self.pre_st_x = 0
        self.pre_st_y = 0
        self.pre_st_w = 0

        self._pre_pose = Pose()
        self._pre_pose.position.x = 0
        self._pre_pose.position.y = 0
        self._pre_pose.position.z = 0
        self._pre_pose.orientation.x = 0
        self._pre_pose.orientation.y = 0
        self._pre_pose.orientation.z = 0
        self._pre_pose.orientation.w = 0

        # Initialise fields
        self.estimatedpose = PoseWithCovarianceStamped()
        self.occupancy_map = OccupancyGrid()
        self.particlecloud = PoseArray()
        self.tf_message = tfMessage()

        self._update_lock = Lock()

        # Parameters
        self.ODOM_ROTATION_NOISE = 0  # Odometry model rotation noise
        self.ODOM_TRANSLATION_NOISE = 0  # Odometry x axis (forward) noise
        self.ODOM_DRIFT_NOISE = 0  # Odometry y axis (side-side) noise
        self.NUMBER_PREDICTED_READINGS = 20

        # Set 'previous' translation to origin
        # All Transforms are given relative to 0,0,0, not in absolute coords.
        self.prev_odom_x = 0.0  # Previous odometry translation from origin
        self.prev_odom_y = 0.0  # Previous odometry translation from origin
        self.prev_odom_heading = 0.0  # Previous heading from odometry data
        self.last_odom_pose = None

        # Request robot's initial odometry values to be recorded in prev_odom
        self.odom_initialised = False
        self.sensor_model_initialised = False

        # Set default initial pose to initial position and orientation.
        self.estimatedpose.pose.pose.position.x = self.INIT_X
        self.estimatedpose.pose.pose.position.y = self.INIT_Y
        self.estimatedpose.pose.pose.position.z = self.INIT_Z
        self.estimatedpose.pose.pose.orientation = rotateQuaternion(
            Quaternion(w=1.0), self.INIT_HEADING)
        # NOTE: Currently not making use of covariance matrix

        self.estimatedpose.header.frame_id = "/map"
        self.particlecloud.header.frame_id = "/map"

        # Sensor model
        self.sensor_model = sensor_model.SensorModel()
コード例 #14
0
    def update_particle_cloud(self, scan):
        # Update particlecloud, given map and laser scan
        particles = self.particlecloud.poses
        # Work out weights of particles from sensor readings
        weighted_particles = []

        for p in particles:
            pw = self.sensor_model.get_weight(scan, p)
            weighted_particles.append((p, pw))

        # Sort the particles by weight in descending order
        sorted_weighted_particles = sorted(weighted_particles,
                                           key=lambda p: p[1],
                                           reverse=True)

        # Keep the 3/4 of particles with the highest weights for resampling
        pred_weighted_particles = sorted_weighted_particles[:int(
            (1 - self.REDIST_PERCENTAGE) * self.NUMBER_PARTICLES)]
        weight_sum = sum([p[1] for p in pred_weighted_particles])
        # Discard and randomly distribute the remaining 1/4 of particles across the map
        rand_weighted_particles = self.gen_random_particles(
            int(self.REDIST_PERCENTAGE * self.NUMBER_PARTICLES))

        # Resample particles according to weights
        cdf_aux = 0.0
        cdf = []
        for (p, w) in pred_weighted_particles:
            cdf.append((p, cdf_aux + w / weight_sum))
            cdf_aux += w / weight_sum

        u = random.uniform(0.0, 1.0 / len(pred_weighted_particles))
        i = 0
        new_particles = PoseArray()

        for j in range(0, len(pred_weighted_particles)):
            while (u > cdf[i][1]):
                i += 1
            new_particle = Pose()
            new_particle.position.x = cdf[i][0].position.x + random.gauss(
                0.0, 0.1)
            new_particle.position.y = cdf[i][0].position.y + random.gauss(
                0.0, 0.1)
            new_particle.orientation = rotateQuaternion(
                Quaternion(w=1.0),
                getHeading(cdf[i][0].orientation) + random.gauss(0, 0.05))

            new_particles.poses.append(new_particle)
            u += (1.0 / len(pred_weighted_particles))

        rand_weighted_particles = self.gen_random_particles(
            int(self.REDIST_PERCENTAGE * self.NUMBER_PARTICLES))
        new_particles.poses += rand_weighted_particles.poses
        self.particlecloud = new_particles
コード例 #15
0
ファイル: initialise.py プロジェクト: JamesKlee/part3
	def gauss_initialise(self, initialpose, numParticles, ratio, rand, pf, test):
		noisePose = 0.4
		self.set_map_dim(pf)		

		# Initialisation of Gaussian Parameters
		meanX = initialpose.position.x
		meanY = initialpose.position.y
		sigmaX = ratio # Test Value
		sigmaY = ratio  # Test Value

		poseArray = PoseArray()
		poseArray.header.stamp = rospy.Time.now()
		
		#Generation of Poses
		for m in range(0, numParticles):
			xNewPose = -1
			yNewPose = -1

			xNewPose = meanX + (random.gauss(0,sigmaX)*noisePose) 
			yNewPose = meanY + (random.gauss(0,sigmaY)*noisePose)

			
			#newPose Parameters
			newPose  = Pose()
			newPose.position.x = xNewPose
			newPose.position.y = yNewPose
			newPose.orientation = None

			#Different orientations assigned for different tests/situations
			if test:
				newPose.orientation = initialpose.orientation
			elif rand:
				newPose.orientation = rotateQuaternion(initialpose.orientation, random.uniform(-math.pi, math.pi))
			else:
				newPose.orientation = rotateQuaternion(initialpose.orientation, random.vonmisesvariate(0, 4))

			poseArray.poses.append(newPose)

		return poseArray
コード例 #16
0
 def generate_random_map_pose(self):
     pose = Pose()
     pose.position.x = self.sensor_model.map_origin_x + random.uniform(
         -(self.sensor_model.map_width / 2.0) *
         self.sensor_model.map_resolution,
         (self.sensor_model.map_width / 2.0) *
         self.sensor_model.map_resolution)
     pose.position.y = self.sensor_model.map_origin_y + random.uniform(
         -(self.sensor_model.map_height / 2.0) *
         self.sensor_model.map_resolution,
         (self.sensor_model.map_height / 2.0) *
         self.sensor_model.map_resolution)
     thetad = random.uniform(-math.pi, math.pi)
     pose.position.z = 0
     pose.orientation = util.rotateQuaternion(Quaternion(w=1.0), thetad)
     return pose
コード例 #17
0
	def smudge_amcl(self, resampledPoses):
				
		cont = True
		pArray = PoseArray()

		if len(resampledPoses):
			temp = []
			val = Pose()
			count = 0
			
			# TEST this value, rounding scalar
			scale = 0.66
	
			while cont:
				temp = []
				val = resampledPoses[0]
				count = 0
	
				for i in range(0, len(resampledPoses)):
					if (resampledPoses[i] == val):
						count = count + 1
					else:
						temp.append(resampledPoses[i])
	
				resampledPoses = temp
				if (len(resampledPoses) == 0):
					cont = False
						
				# THIS NEEDS TESTS, look at scalar above
				if (count > 4) and len(resampledPoses) >= 50: #TEST
					#count = count - 2
					count = int(count * scale)
						
				for i in range(0, count):
					if i > 0:
						newPose = Pose()
						newPose.position.x = random.gauss(val.position.x, 0.3) #TEST THIS
						newPose.position.y = random.gauss(val.position.y, 0.3) #TEST THIS
						newPose.orientation = rotateQuaternion(val.orientation, random.vonmisesvariate(0, 4)) #TEST THIS
						pArray.poses.append(newPose)
						
					else:
						pArray.poses.append(val)
		else:
			pArray.poses = []

		return pArray
コード例 #18
0
    def initialise_particle_cloud(self, initialpose):
        """
        Set particle cloud to initialpose plus noise

        Called whenever an initialpose message is received (to change the
        starting location of the robot), or a new occupancy_map is received.
        self.particlecloud can be initialised here. Initial pose of the robot
        is also set here.
        
        :Args:
            | initialpose: the initial pose estimate
        :Return:
            | (geometry_msgs.msg.PoseArray) poses of the particles
        """

        poses = PoseArray()  #initialising pose array
        for num in range(0, self.NUMBER_PREDICTED_READINGS):
            p = Pose()  #initialising pose

            xNoise = self.ODOM_TRANSLATION_NOISE * np.random.normal(
                0, 0.1)  #noise calculations
            yNoise = self.ODOM_DRIFT_NOISE * np.random.normal(0, 0.1)
            zNoise = 0
            random_angular_noise = self.ODOM_ROTATION_NOISE * np.random.normal(
                0, 0.1)

            p.position.x = initialpose.pose.pose.position.x + xNoise  #pose positions+noise
            p.position.y = initialpose.pose.pose.position.y + yNoise
            p.position.z = initialpose.pose.pose.position.z + zNoise
            p.orientation = rotateQuaternion(initialpose.pose.pose.orientation,
                                             random_angular_noise)

            poses.poses.append(p)
        #poses.header.seq   left it blank
        poses.header.stamp = rospy.Time.now(
        )  #defining the header of the pose array
        poses.header.frame_id = "/map"
        initialPose = Pose()
        initialPose.position.x = initialpose.pose.pose.position.x
        initialPose.position.y = initialpose.pose.pose.position.y
        initialPose.position.z = initialpose.pose.pose.position.z
        initialPose.orientation = initialpose.pose.pose.orientation
        self.initial_pose = initialPose
        self.particlecloud = poses
        print("Initialising particle cloud to length ",
              len(self.particlecloud.poses))
        return poses
コード例 #19
0
ファイル: pf.py プロジェクト: jackdbrowne/int-robot
    def initialise_particle_cloud(self, initialpose):
        # Set particle cloud to initialpose plus noise
        pose_arr = PoseArray()
        init = initialpose.pose.pose
        
        # using 200 particles
        for _ in range(0,200):
        	pose = Pose()
        	
        	# using gaussian distribution
        	pose.position.x = gauss(init.position.x,0.5)
 		pose.position.y = gauss(init.position.y,0.5)
 		rotation = gauss(0, 0.125)
 		pose.orientation = rotateQuaternion(init.orientation, rotation)
        	pose_arr.poses.append(pose)
        
 	return pose_arr
コード例 #20
0
    def initialise_particle_cloud(self, initialpose):
        """
        Set particle cloud to initialpose plus noise
        Called whenever an initialpose message is received (to change the
        starting location of the robot), or a new occupancy_map is received.
        self.particlecloud can be initialised here. Initial pose of the robot
        is also set here.

        :Args:
            | initialpose: the initial pose estimate
        :Return:
            | (geometry_msgs.msg.PoseArray) poses of the particles
        """
        '''
        rospy.loginfo(type(initialpose))
        '''

        self.NUMBER_PREDICTED_READINGS = 200

        rospy.loginfo(initialpose)
        sd = np.std(initialpose.pose.covariance)
        mean = 0
        noise = 6
        initialOrientation = initialpose.pose.pose.orientation
        sdOri = np.pi / 4
        # orientation, covariance, noise
        poses = PoseArray()
        for i in range(self.NUMBER_PREDICTED_READINGS):
            nd = np.random.normal(mean, sd, 2)
            ndOri = np.random.normal(mean, sdOri)
            pose = Pose()
            #yaw = getHeading(initialOrientation) * orientationNoise
            pose.orientation = rotateQuaternion(initialOrientation,
                                                ndOri)  #getHeading(q)
            pose.position.x = initialpose.pose.pose.position.x + nd[0] * noise
            pose.position.y = initialpose.pose.pose.position.y + nd[1] * noise
            pose.position.z = initialpose.pose.pose.position.z
            poses.poses.append(pose)

        rospy.loginfo("-----------------------poses----------------")
        rospy.loginfo(poses)
        rospy.loginfo(len(poses.poses))
        rospy.loginfo("-----------------------endposes----------------")

        return poses
コード例 #21
0
ファイル: pf.py プロジェクト: shuishida/aims_ori_wheel
        def add_noise(std_pos, std_yaw):
            poses = []
            for p in self.particlecloud.poses:  # Iterate over all poses
                new_pose = Pose()
                while not self.is_valid_position(
                        new_pose.position
                ):  # Repeat until point is valid (unoccupied)
                    new_pose.position.x = gauss(
                        p.position.x, std_pos)  # Add noise to x-coordinate
                    new_pose.position.y = gauss(
                        p.position.y, std_pos)  # Add noise to y-coordinate

                rotate_amounts = vonmises(0.0, 1 / std_yaw**2)
                new_pose.orientation = rotateQuaternion(
                    p.orientation, rotate_amounts)

                poses.append(new_pose)
            self.particlecloud.poses = poses
コード例 #22
0
ファイル: pf.py プロジェクト: imattacus/robots_exercise2
    def random_pose(self):
        new_pose = Pose()
        rand_angle = rand.uniform(0, 2 * math.pi)
        new_pose.orientation = rotateQuaternion(q_orig=Quaternion(0, 0, 0, 1),
                                                yaw=rand_angle)

        while True:
            x, y = self.map_coords_to_world(
                map_x=rand.uniform(0, self.occupancy_map.info.width - 1),
                map_y=rand.uniform(0, self.occupancy_map.info.height - 1))
            new_pose.position.x = x
            new_pose.position.y = y

            if not self.map_cell_occupied(new_pose):
                #rospy.loginfo("random x={}, y={}".format(new_pose.position.x, new_pose.position.y))
                break

        return new_pose
コード例 #23
0
 def next_waypoint(self):
     """
     Determine the next waypoint to navigate to
     :param: avail_space_model: The space model from which to select a waypoint
     :return: Random point on the map
     """
     new_pose = Pose()
     self.clean_map()
     (x, y) = self.least_space()
     wx, wy = util.map_coords_to_world(x, y, self.map_model)
     new_pose.position.x = wx
     new_pose.position.y = wy
     rand_a = rand.uniform(0, 2 * math.pi)
     new_pose.orientation = util.rotateQuaternion(q_orig=Quaternion(
         0, 0, 0, 1),
                                                  yaw=rand_a)
     rospy.logwarn("Target pose created => x: {}, y: {}".format(x, y))
     return new_pose
コード例 #24
0
    def rand_particles(self, N):
        ret = PoseArray()
        width = self.occupancy_map.info.width
        height = self.occupancy_map.info.height
        particles = 0
        while particles < N:
            generated_angle = random.vonmisesvariate(mu=0, kappa=0)
            x = random.randint(0, width - 1)  # maybe use gauss
            y = random.randint(0, height - 1)
            new_pose = Pose()
            new_pose.position.x = x * 0.05
            new_pose.position.y = y * 0.05
            new_pose.orientation = rotateQuaternion(Quaternion(w=1.0),
                                                    generated_angle)

            if self.occupancy_map.data[x + y * width] == 0:
                ret.poses.append(new_pose)
                particles += 1
        return ret
コード例 #25
0
    def update_particle_cloud(self, scan):
        # Update particlecloud, given map and laser scan
        weighted_poses = []
        weight_sum = 0
        weight_max = 0
        for particle in self.particlecloud.poses:
            weight = self.sensor_model.get_weight(scan, particle)
            weighted_poses.append([particle, weight])
            weight_sum += weight
            if(weight > weight_max):
                weight_max = weight
        #rospy.loginfo(weight_max)
        #normalisation
        # for counter, pose in enumerate(weighted_poses):
        #     weighted_poses[counter][1] = pose[1]/weight_sum

        n_random = 0
        if(weight_max < self.ADAPTATIVE_THRESHOLD):
            n_random = int(self.ADAPTATIVE_RATIO * self.NUMBER_PARTICLES)
        # elif(weight_max < 11):
        #     n_random = 50
        # elif(weight_max < 15):
        #     n_random = 25
        n_resampled = self.NUMBER_PARTICLES - n_random
        # random.shuffle(weighted_poses)
        resampled_poses = self.resample(weighted_poses, n_resampled)

        resampled_cloud = PoseArray()
        for particle in resampled_poses:
             new_particle = deepcopy(particle[0])
             # sample gaussian noise with sigma = noise parameters, and mean = location
             new_particle.position.x = random.gauss(new_particle.position.x,self.ODOM_TRANSLATION_NOISE)
             new_particle.position.y = random.gauss(new_particle.position.y,self.ODOM_DRIFT_NOISE)
             # sample gaussian noise from the rotation parameter
             # but does that make mathematical sense? What are the rotation noise units?
             new_particle.orientation = rotateQuaternion(new_particle.orientation,(math.radians(random.gauss(0,self.ODOM_ROTATION_NOISE))))
             resampled_cloud.poses.append(new_particle)

        self.add_random_particle_distribution(1, n_random, resampled_cloud)

        # self.add_random_particle_distribution(1, 20, resampled_cloud)
        self.particlecloud = resampled_cloud
コード例 #26
0
ファイル: initialise.py プロジェクト: JamesKlee/part3
	def uniform_initialise(self, initialpose, numParticles, pf):
		self.set_map_dim(pf)		
		poseArray = PoseArray()
		poseArray.header.stamp = rospy.Time.now()
		listFreePoints = pf.listFreePoints

		for m in range(0, numParticles):

			randUninform = int(random.uniform(0,len(listFreePoints)-1))
			coordinates = listFreePoints[randUninform]
			xNewPose = coordinates.x * pf.occupancy_map.info.resolution
			yNewPose = coordinates.y * pf.occupancy_map.info.resolution
			
			#newPose Parameters
			newPose  = Pose()
			newPose.position.x = xNewPose
			newPose.position.y = yNewPose
			newPose.orientation = rotateQuaternion(initialpose.orientation, random.uniform(-math.pi, math.pi))
			poseArray.poses.append(newPose)
		return poseArray
コード例 #27
0
ファイル: estimatePose.py プロジェクト: JamesKlee/part3
	def avg_estimate(self, pf):
		sumX = 0
		sumY = 0
		sumOrientation = 0
		particles = pf.particlecloud

		for i in range (0, len(particles.poses)):
			sumX += particles.poses[i].position.x
			sumY += particles.poses[i].position.y
			heading = getHeading(particles.poses[i].orientation)
			sumOrientation += getHeading(particles.poses[i].orientation)

		pose = Pose()
		pose.position.x = sumX/len(particles.poses)
		pose.position.y = sumY/len(particles.poses)
		orientation = pf.estimatedpose.pose.pose.orientation
		pose.orientation = rotateQuaternion(orientation, sumOrientation/len(particles.poses) - getHeading(orientation))

		rospy.loginfo("X: " + str(pose.position.x) +", Y: " + str(pose.position.y))
		return pose
コード例 #28
0
    def generate_pose_inside_map(self):
        """
        Generates a pose randmly inside the map
        :return: (geometry_msgs.msg.Pose) A pose randomly placed inside the map
        """
        pose = Pose()
        # Gets a random pair of coordinates (x, y) inside the map and assigns them to the new pose
        idx = random.randint(0, len(self.points_inside_map) - 1)
        pose.position.x = self.points_inside_map[idx][0]
        pose.position.y = self.points_inside_map[idx][1]
        pose.position.z = 0
        pose.orientation.w = 1
        # Assigns a random orientation to the new pose by rotating a Quaternion
        # by a random angle between 0 and 360 degrees
        pose.orientation = rotateQuaternion(
            pose.orientation,
            math.radians(random.uniform(0, 360))
        )

        return pose
コード例 #29
0
ファイル: pf.py プロジェクト: snowhong/backup
    def initialise_particle_cloud(self, initialpose):
        #Set particle cloud to initialpose plus noise
        noise = 1
        #create an array of Poses
        posArray = PoseArray()

        #iterate over the number of particles and append to PosArray
        for x in range(0, self.NUMBER_PREDICTED_READINGS): 
            pose = Pose()

            pose.position.x =  random.gauss(initialpose.pose.pose.position.x, noise)
            pose.position.y = random.gauss(initialpose.pose.pose.position.y, noise)
            pose.position.z = 0

        #TODO:reconfig the parameters
            pose.orientation = rotateQuaternion(initialpose.pose.pose.orientation, math.radians(random.gauss(0,30)))

            posArray.poses.extend([pose])

        #print posArray
        return posArray
コード例 #30
0
ファイル: pf.py プロジェクト: shuishida/aims_ori_wheel
    def generate_random_pose(self):
        """ Generates a random pose on the map.
        Return:
            (geometry_msgs.msg.Pose) the random pose on the map
        """
        p = Pose()  # Instantiate pose
        while not self.is_valid_position(
                p.position):  # Repeat until unoccupied point is found
            p.position.x = random(
            ) * self.occupancy_map.info.width  # Sample x location on map
            p.position.y = random(
            ) * self.occupancy_map.info.height  # Sample y location on map
        p.position.z = 0.0  # No elevation, z-coordinate is 0

        p.orientation.w = 1.0
        p.orientation.x = 0.0
        p.orientation.y = 0.0
        p.orientation.z = 0.0
        p.orientation = rotateQuaternion(p.orientation, 2 * math.pi * random())

        return p  # Return pose # NotImplementedError("generate_random_pose not implemented!")
コード例 #31
0
ファイル: initialise.py プロジェクト: JamesKlee/part3
	def equal_initialise(self, initialpose, numParticles, pf):
		poseArray = PoseArray()
		poseArray.header.stamp = rospy.Time.now()
		listFreePoints = pf.listFreePoints

		pixelGap = 18

		for m in range(0, len(listFreePoints), pixelGap):
			coordinates = listFreePoints[m]
			if coordinates.y % pixelGap == 0.0:
				xNewPose = coordinates.x * pf.occupancy_map.info.resolution
				yNewPose = coordinates.y * pf.occupancy_map.info.resolution
			
				#newPose Parameters
				newPose  = Pose()
				newPose.position.x = xNewPose
				newPose.position.y = yNewPose
				newPose.orientation = rotateQuaternion(initialpose.orientation, random.uniform(-math.pi, math.pi))
				poseArray.poses.append(newPose)
		print("HI")
		return poseArray
コード例 #32
0
    def initialise_particle_cloud(self, initialpose):
        """
        Set particle cloud to initialpose plus noise

        Called whenever an initialpose message is received (to change the
        starting location of the robot), or a new occupancy_map is received.
        self.particlecloud can be initialised here. Initial pose of the robot
        is also set here.
        
        :Args:
            | initialpose: the initial pose estimate
        :Return:
            | (geometry_msgs.msg.self.particlecloud) poses of the particles

        """
        #rospy.loginfo("initial pose %s"%initialpose)
        X = initialpose.pose.pose.position.x
        Y = initialpose.pose.pose.position.y
        th = initialpose.pose.pose.orientation
        rad = 1
        #self.particlecloud=[]
        particleArray = PoseArray()
        particleArray.poses = [Odometry().pose.pose] * 250
        #rospy.loginfo("particlearray pose %s"%len(particleArray.poses))
        for i in range(0, 250):
            particle = Pose()
            th1 = random() * 360
            th2 = random() * 360
            radius = random() * rad

            x = radius * math.sin(th1) + X
            y = radius * math.cos(th1) + Y
            particle.position.x = x
            particle.position.y = y
            particle.orientation = rotateQuaternion(th, th2)
            particleArray.poses[i] = particle
#rospy.loginfo("random pose %s"%particle)
#rospy.loginfo("particlearray pose %s"%particleArray)
        return particleArray
コード例 #33
0
ファイル: pf.py プロジェクト: shuishida/aims_ori_wheel
        def generate_gaussian_pose(initial_pose):
            p = Pose()
            p.position.x = gauss(initial_pose.pose.pose.position.x,
                                 self.POSITION_STANDARD_DEVIATION)
            p.position.y = gauss(initial_pose.pose.pose.position.y,
                                 self.POSITION_STANDARD_DEVIATION)
            p.position.z = 0.0

            # Convert initial orientation from quaternion into euler representation and get yaw angle

            # initial_yaw = tf.transformations.euler_from_quaternion(orientation_to_vec(initial_pose.pose.pose.orientation))[2]
            # rand_yaw = vonmises(initial_yaw, 1.0 / self.ORIENTATION_STANDARD_DEVIATION ** 2)  # Generate random yaw angle
            # vector = tf.transformations.quaternion_from_euler(0.0, 0.0, rand_yaw)  # Convert yaw angle into quaternion representation
            # p.orientation = vec_to_orientation(vector)

            # heading = getHeading(initial_pose.pose.pose.orientation)
            rotate_amounts = vonmises(
                0.0, 1 / self.ORIENTATION_STANDARD_DEVIATION**2)
            p.orientation = rotateQuaternion(
                initial_pose.pose.pose.orientation, rotate_amounts)

            return p
コード例 #34
0
    def gen_random_particles(self, number_of_particles):
        particles = PoseArray()

        map_width = self.occupancy_map.info.width
        map_height = self.occupancy_map.info.height

        accepted_particles = 0

        while accepted_particles < number_of_particles:
            x = random.randint(0, map_width - 1)
            y = random.randint(0, map_height - 1)
            theta = random.uniform(0, 2 * math.pi)

            pose = Pose()
            pose.position.x = x * 0.05
            pose.position.y = y * 0.05
            pose.orientation = rotateQuaternion(Quaternion(w=1.0), theta)

            map_index = x + y * map_width
            if self.occupancy_map.data[map_index] == 0:
                particles.poses.append(pose)
                accepted_particles += 1
        return particles
コード例 #35
0
    def predict_from_odometry(self, odom):
        """
        Adds the estimated motion from odometry readings to each of the
        particles in particlecloud.
        
        :Args:
            | odom (nav_msgs.msg.Odometry): Recent Odometry data
        """
        with self._update_lock:

            t = time.time()
            x = odom.pose.pose.position.x
            y = odom.pose.pose.position.y
            new_heading = getHeading(odom.pose.pose.orientation)

            # ----- On our first run, the incoming translations may not be equal to
            # ----- zero, so set them appropriately
            if not self.odom_initialised:
                self.prev_odom_x = x
                self.prev_odom_y = y
                self.prev_odom_heading = new_heading
                self.odom_initialised = True

            # ----- Find difference between current and previous translations
            dif_x = x - self.prev_odom_x
            dif_y = y - self.prev_odom_y
            dif_heading = new_heading - self.prev_odom_heading
            if dif_heading > math.pi:
                dif_heading = (math.pi * 2) - dif_heading
            if dif_heading < -math.pi:
                dif_heading = (math.pi * 2) + dif_heading

            # ----- Update previous pure odometry location (i.e. excluding noise)
            # ----- with the new translation
            self.prev_odom_x = x
            self.prev_odom_y = y
            self.prev_odom_heading = new_heading
            self.last_odom_pose = odom

            # ----- Find robot's linear forward/backward motion, given the dif_x and
            # ----- dif_y changes and its orientation
            distance_travelled = math.sqrt(dif_x * dif_x + dif_y * dif_y)
            direction_travelled = math.atan2(dif_y, dif_x)
            temp = abs(new_heading - direction_travelled)

            if temp < -PI_OVER_TWO or temp > PI_OVER_TWO:
                # ----- We are going backwards
                distance_travelled = distance_travelled * -1

            # ----- Update each particle with change in position (plus noise)
            for p in self.particlecloud.poses:

                rnd = random.normalvariate(0, 1)

                # ----- Rotate particle according to odometry rotation, plus  noise
                p.orientation = (rotateQuaternion(
                    p.orientation, dif_heading +
                    rnd * dif_heading * self.ODOM_ROTATION_NOISE))

                # ----- Get particle's new orientation
                theta = getHeading(p.orientation)

                # ----- Find translation in the direction of particle's orientation
                travel_x = distance_travelled * math.cos(theta)
                travel_y = distance_travelled * math.sin(theta)
                p.position.x = (p.position.x + travel_x +
                                (rnd * travel_x * self.ODOM_TRANSLATION_NOISE))
                p.position.y = (p.position.y + travel_y +
                                (rnd * travel_y * self.ODOM_DRIFT_NOISE))

        return time.time() - t
コード例 #36
0
ファイル: pf_base.py プロジェクト: JamesKlee/part3
	def __init__(self, _num, _mapTopic, _algorithmName):
		# Initialise fields
		self.estimatedpose =  PoseWithCovarianceStamped()
		self.occupancy_map = OccupancyGrid()
		self.particlecloud =  PoseArray()
		self.tf_message = tfMessage()
		self.weights = []
		self.maxWeight = 0
		self.totalWeight = 0
		self.num = _num
		self.clusterTask = ClusterTask()
		self.floorName = _mapTopic
		self.exploded = False

		# Initialise objects
		self.cloud = UpdateParticleCloud()
		self.estimate = EstimatePose()
		self.init = InitialiseCloud()

		self._weighted_particle_publisher = rospy.Publisher("/weightedParticles", WeightedParticles)
		
		# Parameters
		self.ODOM_ROTATION_NOISE = 0 		# Odometry model rotation noise
		self.ODOM_TRANSLATION_NOISE = 0 	# Odometry x axis (forward) noise
		self.ODOM_DRIFT_NOISE = 0 			# Odometry y axis (side-side) noise
		self.NUMBER_PREDICTED_READINGS = 20

		# Set 'previous' translation to origin
		# All Transforms are given relative to 0,0,0, not in absolute coords.
		self.prev_odom_x  = 0.0 # Previous odometry translation from origin
		self.prev_odom_y = 0.0  # Previous odometry translation from origin
		self.prev_odom_heading = 0.0 # Previous heading from odometry data
		self.last_odom_pose = None

		# Request robot's initial odometry values to be recorded in prev_odom
		self.odom_initialised = False
		self.sensor_model_initialised = False

		# Set default initial pose to initial position and orientation.
		self.estimatedpose.pose.pose.position.x = self.INIT_X
		self.estimatedpose.pose.pose.position.y = self.INIT_Y
		self.estimatedpose.pose.pose.position.z = self.INIT_Z
		self.estimatedpose.pose.pose.orientation = rotateQuaternion(Quaternion(w=1.0),self.INIT_HEADING)

		# NOTE: Currently not making use of covariance matrix

		self.estimatedpose.header.frame_id = "/map"
		self.particlecloud.header.frame_id = "/map"

		# Sensor model
		self.sensor_model =  sensor_model.SensorModel()

		print(_algorithmName)

		# What algorithm do we use?
		if _algorithmName == "async":
			self.asynchronous = True
		elif _algorithmName == "sync":
			self.asynchronous = False
		else:
			print("Invalid argument 3: expected \"sync\" or \"async\"")
			sys.exit(1)

		# Free Point where Robot can be
		self.listFreePoints = []
コード例 #37
0
ファイル: pf_base.py プロジェクト: snowhong/backup
 def predict_from_odometry(self, odom):
     """
     Adds the estimated motion from odometry readings to each of the
     particles in particlecloud.
     
     :Args:
         | odom (nav_msgs.msg.Odometry): Recent Odometry data
     """
     with self._update_lock:
         
         t = time.time()
         x = odom.pose.pose.position.x
         y = odom.pose.pose.position.y
         new_heading = getHeading(odom.pose.pose.orientation)
         
         # On our first run, the incoming translations may not be equal to 
         # zero, so set them appropriately
         if not self.odom_initialised:
             self.prev_odom_x = x
             self.prev_odom_y = y
             self.prev_odom_heading = new_heading
             self.odom_initialised = True
 
         # Find difference between current and previous translations
         dif_x = x - self.prev_odom_x
         dif_y = y - self.prev_odom_y
         dif_heading = new_heading - self.prev_odom_heading
         if dif_heading >  math.pi:
             dif_heading = (math.pi * 2) - dif_heading
         if dif_heading <  -math.pi:
             dif_heading = (math.pi * 2) + dif_heading
         
         # Update previous pure odometry location (i.e. excluding noise) 
         # with the new translation
         self.prev_odom_x = x
         self.prev_odom_y = y
         self.prev_odom_heading = new_heading
         self.last_odom_pose = odom
         
         # Find robot's linear forward/backward motion, given the dif_x and 
         # dif_y changes and its orientation
         distance_travelled = math.sqrt(dif_x*dif_x + dif_y*dif_y)
         direction_travelled = math.atan2(dif_y, dif_x)
         temp = abs(new_heading - direction_travelled)
 
         if temp < -PI_OVER_TWO or temp > PI_OVER_TWO:
             # We are going backwards
             distance_travelled = distance_travelled * -1
         
         # Update each particle with change in position (plus noise)
         for p in self.particlecloud.poses:
             
             rnd = random.normalvariate(0, 1)
             
             # Rotate particle according to odometry rotation, plus  noise
             p.orientation = (rotateQuaternion(p.orientation,
                                               dif_heading + rnd * dif_heading * self.ODOM_ROTATION_NOISE))
             
             # Get particle's new orientation
             theta = getHeading(p.orientation)
             
             # Find translation in the direction of particle's orientation
             travel_x = distance_travelled * math.cos(theta)
             travel_y = distance_travelled * math.sin(theta)
             p.position.x = (p.position.x + travel_x +
                             (rnd * travel_x * self.ODOM_TRANSLATION_NOISE))
             p.position.y = (p.position.y + travel_y +
                             (rnd * travel_y * self.ODOM_DRIFT_NOISE))
 
     return time.time() - t
コード例 #38
0
	def update_kld_amcl(self, scan, pf):

		self.weight_particles(scan, pf)

		numParticles = len(pf.particlecloud.poses)

		rospy.loginfo(maxWeight)

		#if the maximum weighted particle has a weight below 10 reinitialise the particles
		if maxWeight < 7:
			pf.particlecloud = pf.reinitialise_cloud(pf.estimatedpose.pose.pose, 3.0, True)
			self.weight_particles(scan, pf)
			numParticles = len(pf.particlecloud.poses)


		resampledPoses = []
		index = 0
		notAccepted = True

		#Initialize KLD Sampling 	
		ztable = [i/maxWeight for i in particleWeights]
		support_samples=0
		num_samples=0
		quantile=0.5
		kld_error = 0.1
		bin_size = 0.1
		min_samples=10
		seed=-1
		kld_samples = 0

		if (min_samples < self.ABSOLUTE_MIN):
			kld_samples=self.ABSOLUTE_MIN
		else:
			kld_samples=min_samples

		bins = []

		confidence=quantile-0.5; # ztable is from right side of mean
		confidence=min(0.49998,max(0,confidence))

		max_error = kld_error;
		bin_size = bin_size; # list of lists

		zvalue=4.1;
		for i in range(len(ztable)):
			if(ztable[i] >= confidence):
				zvalue=i/100.0
				break
	
		#Resample the poses
		samples = []

		while (num_samples < min_samples and num_samples < 250) :
			#Get Sample
			notAccepted = True
			while (notAccepted):
				index = random.randint(0,numParticles-1)
				posX = pf.particlecloud.poses[index].position.x
				posY = pf.particlecloud.poses[index].position.y

				if (random.uniform(0,1) < particleWeights[index]/totalWeight):
					notAccepted = False

			curr_sample = pf.particlecloud.poses[index]
			samples.append(curr_sample)
			num_samples = num_samples+1
			curr_bin = curr_sample

			if len(bins)==0 or curr_bin not in bins:
				bins.append(curr_bin);
				support_samples = support_samples+1
			if support_samples>=2:
				k = support_samples-1
				k=math.ceil(k/(2*max_error)*pow(1-2/(9.0*k)+math.sqrt(2/(9.0*k))*zvalue,3))
				if k>kld_samples:
				    kld_samples = k

			min_samples = kld_samples
			
	
		resampledPoses = samples
		rospy.loginfo("Size Samples = %s"%len(samples))
		cont = True
		pArray = PoseArray()
		temp = []
		val = Pose()
		count = 0
			
		# TEST this value, rounding scalar
		scale = 0.66
	
		while cont:
			temp = []
			val = resampledPoses[0]
			count = 0
	
			for i in range(0, len(resampledPoses)):
				if (resampledPoses[i] == val):
					count = count + 1
				else:
					temp.append(resampledPoses[i])
	
			resampledPoses = temp
			if (len(resampledPoses) == 0):
				cont = False
						
			# THIS NEEDS TESTS, look at scalar above
			if (count > 4) and len(resampledPoses) >= 50: #TEST
				#count = count - 2
				count = int(count * scale)
						
			for i in range(0, count):
				if i > 0:
					newPose = Pose()
					newPose.position.x = random.gauss(val.position.x, 0.3) #TEST THIS
					newPose.position.y = random.gauss(val.position.y, 0.3) #TEST THIS
					newPose.orientation = rotateQuaternion(val.orientation, random.vonmisesvariate(0, 4)) #TEST THIS
					pArray.poses.append(newPose)
						
				else:
					pArray.poses.append(val)

		return pArray
コード例 #39
0
    def update_particle_cloud(self, scan):

        ##---------------------------##
        ##---------PARAMETERs--------##
        ##---------------------------##
        #list of poses
        sum_weights = 0
        sum_count = 0
        cumulate_weight = []
        separate_weight = []

        cloud_pose = self.particlecloud.poses

        ##---------------------------##
        ##-----------WEIGHT----------##
        ##---------------------------##

        ##remove the invalid value.
        scan.ranges = ma.masked_invalid(scan.ranges).filled(scan.range_max)

        ##record the weight for each pose, in case to use it again
        pairs_partweight = []
        #time1 = datetime.datetime.now()

        ##weight need scan_data and current_pose
        for i in cloud_pose:
            particle_weight = self.sensor_model.get_weight(scan, i)
            sum_weights += particle_weight
            pairs_partweight.append([i, particle_weight])
    #time2 = datetime.datetime.now()
    ##calculate the time consume
    #print (time2 - time1 ).microseconds

        for pair in pairs_partweight:
            particle_weight = pair[1]
            weight_over_sum = particle_weight / sum_weights
            sum_count += weight_over_sum
            cumulate_weight.extend([sum_count])

    #print cumulate_weight
    ##-----------------------##
    ##---------UPDATE--------##
    ##-----------------------##
        updated_particlecloud = PoseArray()
        for particle in cloud_pose:
            count = 0
            rand = random.uniform(0, 1)
            for i in cumulate_weight:
                ##TODO:the repeat pose doesn't matters
                if rand <= i:
                    updated_particlecloud.poses.extend([cloud_pose[count]])
                    #print count
                    break
                count = count + 1

    ##-----------------------##
    ##---------NOISE---------##
    ##-----------------------##

        updated_with_noise_cloud = PoseArray()

        for i in updated_particlecloud.poses:
            noise_pose = Pose()
            noise_pose.position.x = random.gauss(
                i.position.x, (i.position.x * self.ODOM_DRIFT_NOISE))
            noise_pose.position.y = random.gauss(
                i.position.y, (i.position.y * self.ODOM_TRANSLATION_NOISE))
            noise_pose.orientation = rotateQuaternion(
                i.orientation,
                math.radians(
                    random.uniform(-self.ODOM_ROTATION_NOISE,
                                   self.ODOM_ROTATION_NOISE)))

            updated_with_noise_cloud.poses.extend([noise_pose])

    ##-----------------------##
    ##---------OUTPUT--------##
    ##-----------------------##

        self.particlecloud = updated_with_noise_cloud
コード例 #40
0
ファイル: pf.py プロジェクト: snowhong/backup
    def update_particle_cloud(self, scan):

        ##---------------------------##
    ##---------PARAMETERs--------##
    ##---------------------------##
        #list of poses
        sum_weights = 0
        sum_count = 0
        cumulate_weight= [] 
        separate_weight= []

        cloud_pose = self.particlecloud.poses

    ##---------------------------##
    ##-----------WEIGHT----------##
    ##---------------------------##

    ##remove the invalid value.
        scan.ranges=ma.masked_invalid(scan.ranges).filled(scan.range_max)

    ##record the weight for each pose, in case to use it again
        pairs_partweight=[]
    #time1 = datetime.datetime.now() 

    ##weight need scan_data and current_pose
        for i in cloud_pose:
            particle_weight = self.sensor_model.get_weight(scan, i)
            sum_weights+= particle_weight
            pairs_partweight.append([i,particle_weight])
    #time2 = datetime.datetime.now()
    ##calculate the time consume
    #print (time2 - time1 ).microseconds

        for pair in pairs_partweight:
            particle_weight = pair[1]
            weight_over_sum = particle_weight/sum_weights
            sum_count+= weight_over_sum
            cumulate_weight.extend([sum_count])    

    #print cumulate_weight
    ##-----------------------##
    ##---------UPDATE--------##
    ##-----------------------##
        updated_particlecloud = PoseArray()
        for particle in cloud_pose:
            count = 0
            rand = random.uniform(0,1)
            for i in cumulate_weight:
                ##TODO:the repeat pose doesn't matters
                if rand <= i:
                    updated_particlecloud.poses.extend([cloud_pose[count]])
                    #print count
                    break
                count=count+1

    ##-----------------------##
    ##---------NOISE---------##
    ##-----------------------##

        updated_with_noise_cloud = PoseArray()

        for i in updated_particlecloud.poses:
            noise_pose = Pose()
            noise_pose.position.x = random.gauss(i.position.x,(i.position.x * self.ODOM_DRIFT_NOISE))
            noise_pose.position.y = random.gauss(i.position.y,(i.position.y * self.ODOM_TRANSLATION_NOISE))
            noise_pose.orientation = rotateQuaternion(i.orientation, math.radians(random.uniform(-self.ODOM_ROTATION_NOISE,self.ODOM_ROTATION_NOISE)))

            updated_with_noise_cloud.poses.extend([noise_pose])

    ##-----------------------##
    ##---------OUTPUT--------##
    ##-----------------------##

        self.particlecloud = updated_with_noise_cloud
コード例 #41
0
	def resample_kld(self, particleWT, tWeight):
		#particleWT[i][0] is the map_topic associated with the particle
		#particleWT[i][1] is the particle
		#particleWT[i][2] is the weight associated with the particle 
		#self.mapInfo[i][0] is the map_topic associated with the listFreePoints	
		#self.mapInfo[i][1] is the listFreePoints 
		#self.mapInfo[i][2] is the resolution of the map associated with listFreePoints
		numParticles = len(particleWT)
		index = 0
		notAccepted = True
		listFreePoints = []
		resampledPoses = []
		numberSamplesMap = {}

		#Initialize KLD Sampling 	
		zvalue = 2.1
		binsDict = {}
		binsSize = 0
		k = 0 #Number of Bins not empty
		epsilon = 0.05
		Mmin = 50
		#Mmin = int(0.9 * len(particleWT))
		M = 0
		Mx = 0

		#Initialising the bins
		for i in range(0, len(self.mapInfo)):
			listFreePoints = self.mapInfo[i][1]

			for j in range(0,len(listFreePoints), 5):
				currentCell = listFreePoints[j]
				topic = self.mapInfo[i][0]				
				cellX = currentCell.x
				cellY = currentCell.y
				valueBin = False
				binsDict[(topic, cellX, cellY)] = False			
				binsSize = binsSize + 1

		#Initialising the numberSamplesMap
		for n in range(0, len(self.mapInfo)):
			numberSamplesMap[self.mapInfo[n][0]] = 0 
		"""#Resample the poses
		for m in range(0, len(self.mapInfo)):
			M = 0
			Mx = 0
			mapName = self.mapInfo[m][0]

			while (M < Mx or M < Mmin) :
				#Get Sample 
				notAccepted = True
				while (notAccepted):
					index = random.randint(0,numParticles-1)
					particle = particleWT[index]
					if (random.uniform(0,1) < particle[2]/tWeight) and (particle[0] == mapName):
						notAccepted = False

				curr_sample = (particle[0], particle[1])
				resampledPoses.append(curr_sample)
				M = M + 1

				#Convert Coodinates of the Pose to know if the bin is Empty or not
				for i in range(0,len(self.mapInfo)) :
					if (particle[0] == self.mapInfo[i][0]):
						mapResolution = self.mapInfo[i][2]
						xBin = int(curr_sample[1].position.x / mapResolution)
						yBin = int(curr_sample[1].position.y / mapResolution)
				

				for l in range(0, binsSize):
					if ((curr_sample[0], xBin, yBin) in binsDict):
						#rospy.loginfo("Hello")
						if (binsDict[(curr_sample[0], xBin, yBin)] == False):
							binsDict[(curr_sample[0], xBin, yBin)] = True
							k = k + 1
							rospy.loginfo("k is %s"%k)
							if (k > 1):
								Mx = ((k-1)/(2*epsilon)) * math.pow(1 - (2/(9*(k-1))) + (math.sqrt(2/(9*(k-1)))*zvalue),3)
							break
				rospy.loginfo("Mx is %s"%Mx)
		
		"""
		while (M < Mx or M < Mmin) :
			#Get Sample 
			notAccepted = True
			while (notAccepted):
				index = random.randint(0,numParticles-1)
				particle = particleWT[index]
				if (random.uniform(0,1) < particle[2]/tWeight):
					notAccepted = False

			curr_sample = (particle[0], particle[1])
			resampledPoses.append(curr_sample)
			M = M + 1

			#Count Number Samples
			numberSamplesMap[curr_sample[0]] = numberSamplesMap[curr_sample[0]] + 1
			#Convert Coodinates of the Pose to know if the bin is Empty or not
			xBin = -1
			yBin = -1

			for i in range(0,len(self.mapInfo)) :
				if (particle[0] == self.mapInfo[i][0]):
					mapResolution = self.mapInfo[i][2]
					xBin = int(curr_sample[1].position.x / mapResolution)
					yBin = int(curr_sample[1].position.y / mapResolution)
				break
			

			for l in range(0, binsSize):
				if ((curr_sample[0], xBin, yBin) in binsDict):
					#rospy.loginfo("Hello")
					if (binsDict[(curr_sample[0], xBin, yBin)] == False):
						binsDict[(curr_sample[0], xBin, yBin)] = True
						k = k + 1
						if (k > 1):
							Mx = ((k-1)/(2*epsilon)) * math.pow(1 - (2/(9*(k-1))) + (math.sqrt(2/(9*(k-1)))*zvalue),3)
						break

		#Add particles if one map have no particles
		nameMapAdd = None
		mapResolution = 0
		minNumberParticles = -1 #Must be different of 0

		for key in numberSamplesMap:
			rospy.loginfo("Map = %s"%key)
			rospy.loginfo("Value = %s"%numberSamplesMap[key])
			value = numberSamplesMap[key]
			if value == 0 :
				nameMapAdd = key
			if (value != 0) and ((value < minNumberParticles) or minNumberParticles == -1):
				minNumberParticles = value

		if nameMapAdd != None:
			rospy.loginfo("Map to re-Initialize = %s"%nameMapAdd)
			#Finding Correct listFreePoints
			listFreePoints = []
			rospy.loginfo("minNumberParticles = %s"%minNumberParticles)
			for p in range(0, len(self.mapInfo)):
				if self.mapInfo[p][0] == nameMapAdd:
					listFreePoints = self.mapInfo[p][1] 
					mapResolution = self.mapInfo[p][2]  				
			#Generate Particles
			for m in range(0, minNumberParticles):
				rospy.loginfo("ListFree = %s"%len(listFreePoints))
				randUninform = int(random.uniform(0,len(listFreePoints)-1))
				coordinates = listFreePoints[randUninform]
				xNewPose = coordinates.x * mapResolution
				yNewPose = coordinates.y * mapResolution
			
				#newPose Parameters
				newPose  = Pose()
				newPose.position.x = xNewPose
				newPose.position.y = yNewPose
				newPose.orientation = rotateQuaternion(self.pose.orientation, random.uniform(-math.pi, math.pi))
				curr_sample = (nameMapAdd, newPose)
				resampledPoses.append(curr_sample)

		
		rospy.loginfo("number of particles resampled %s"%len(resampledPoses))
		return resampledPoses