コード例 #1
0
ファイル: main.py プロジェクト: KeitoTakaishi/deep-fluids
def main(config):
    prepare_dirs_and_logger(config)
    tf.compat.v1.set_random_seed(config.random_seed)

    if 'nn' in config.arch:
        from data_nn import BatchManager
    else:
        from data import BatchManager
    batch_manager = BatchManager(config)

    if config.is_3d:
        trainer = Trainer3(config, batch_manager)
    else:
        trainer = Trainer(config, batch_manager)

    print("---------------------------------")
    print("|                               |")
    print("|                               |")
    print("|       prepare trainer         |")
    print("|           is done             |")
    print("|                               |")
    print("|                               |")
    print("---------------------------------")

    if config.is_train:
        save_config(config)
        trainer.train()
    else:
        if not config.load_path:
            raise Exception(
                "[!] You should specify `load_path` to load a pretrained model"
            )
        trainer.test()
コード例 #2
0
ファイル: test_config.py プロジェクト: zhangjianRules/hdfs
 def test_create_client_with_alias(self):
   with temppath() as tpath:
     config = Config(path=tpath)
     section = 'dev.alias'
     config.add_section(section)
     config.set(section, 'url', 'http://host:port')
     save_config(config)
     Config(path=tpath).get_client('dev')
コード例 #3
0
ファイル: test_config.py プロジェクト: zhangjianRules/hdfs
 def test_disable_file_logging(self):
   with temppath() as tpath:
     config = Config(tpath)
     config.add_section('cmd.command')
     config.set('cmd.command', 'log.disable', 'true')
     save_config(config)
     config = Config(tpath)
     handler = config.get_log_handler('cmd')
     ok_(not isinstance(handler, TimedRotatingFileHandler))
コード例 #4
0
ファイル: email_daily_changes.py プロジェクト: KayneWest/iem
def drive_changelog(yesterday, html):
    """ Do something """
    drive = util.get_driveclient()

    start_change_id = util.CONFIG.get("changestamp", "1")

    html += """<p><table border="1" cellpadding="3" cellspacing="0">
<thead>
<tr><th>Changestamp</th><th>Time</th><th>Author</th><th>Resource</th></tr>
</thead>
<tbody>"""

    largestChangeId = -1
    hits = 0
    page_token = None
    while True:
        param = {}
        if start_change_id:
            param['startChangeId'] = start_change_id
        if page_token:
            param['pageToken'] = page_token
        print(("Requesting start_change_id: %s "
               "largestChangeId: %s page_token: %s"
               ) % (start_change_id, largestChangeId, page_token))
        response = drive.changes().list(**param).execute()
        largestChangeId = response['largestChangeId']
        page_token = response.get('nextPageToken')
        for item in response['items']:
            changestamp = item['id']
            if item['deleted']:
                continue
            modifiedDate = datetime.datetime.strptime(
                item['file']['modifiedDate'][:19], '%Y-%m-%dT%H:%M:%S')
            modifiedDate = modifiedDate.replace(tzinfo=pytz.timezone("UTC"))
            if modifiedDate < yesterday:
                continue
            uri = item['file']['alternateLink']
            title = item['file']['title']
            author = item['file']['lastModifyingUserName']
            localts = modifiedDate.astimezone(pytz.timezone("America/Chicago"))
            hits += 1
            html += """
<tr><td>%s</td><td>%s</td><td>%s</td><td><a href="%s">%s</a></td></tr>
            """ % (changestamp, localts.strftime("%-d %b %I:%M %P"),
                   author, uri, title)
        if not page_token:
            break

    util.CONFIG['changestamp'] = changestamp
    if hits == 0:
        html += """<tr><td colspan="4">No Changes Found...</td></tr>\n"""

    html += """</tbody></table>"""

    util.save_config()
    return html
コード例 #5
0
ファイル: command.py プロジェクト: iceihehe/qingcloud-cli
def config(access_key_id, secret_access_key):
    """
    配置密钥信息

    ACCESS_KEY_ID 申请的API密钥ID

    SECRET_ACCESS_KEY 申请的API密钥
    """
    save_config(access_key_id=access_key_id, secret_access_key=secret_access_key)
    click.echo("密钥ID配置成功")
コード例 #6
0
ファイル: test_config.py プロジェクト: zhangjianRules/hdfs
 def test_create_client_with_alias_and_timeout(self):
   with temppath() as tpath:
     config = Config(path=tpath)
     section = 'dev.alias'
     config.add_section(section)
     config.set(section, 'url', 'http://host:port')
     config.set(section, 'timeout', '1')
     save_config(config)
     eq_(Config(path=tpath).get_client('dev')._timeout, 1)
     config.set(section, 'timeout', '1,2')
     save_config(config)
     eq_(Config(path=tpath).get_client('dev')._timeout, (1,2))
コード例 #7
0
ファイル: run.py プロジェクト: JacobImai/learning_to_run
def convert_legacy_config(trial_dir, t_agent):
    legacy_config_file = os.path.join(trial_dir, "config.pk")
    config_file = os.path.join(trial_dir, "config.yaml")
    if not os.path.exists(legacy_config_file):
        raise ValueError("No config file found in {}".format(trial_dir))
    else:
        legacy_config = util.load_legacy_config(legacy_config_file)
        default_config = util.load_config("default.yaml")[t_agent]
        for k in default_config:
            if k in legacy_config:
                default_config[k] = legacy_config[k]
        default_config["agent"] = t_agent
        util.save_config(config_file, default_config)
コード例 #8
0
def settings():
    tables = models.components.keys()
    form = forms.create_prefs_form()
    if form.validate_on_submit():
        form.populate_obj(util.AttributeWrapper(app.config))
        util.save_config(app.config, CONFIG_PATH)
        warning = library.check()
        if warning:
            flash(warning, "error")
        flash("Your settings have been saved.", "success")
        models.create()
        return redirect(request.referrer)
    return render_template('settings.html', form=form, tables=tables)
コード例 #9
0
    def event_reconfig():
        log.debug(f"Handling 'request={data['request']}'.")
        lkp.clear_template_info_cache()

        if lkp.instance_role == "controller":
            # Inactive all partitions to prevent further scheduling
            partitions = get_partitions()
            update_partitions(partitions, "INACTIVE")

            # Fetch and write new config.yaml
            util.cfg = util.config_from_metadata()
            if not util.cfg.pubsub_topic_id:
                log.info("Auto reconfigure is disabled. Aborting...")
                exit(0)
            util.save_config(util.cfg, util.CONFIG_FILE)
            util.lkp = util.Lookup(util.cfg)

            # Regenerate *.conf files
            log.info("Clean install custom scripts")
            setup.install_custom_scripts(clean=True)
            log.info("Generating new cloud.conf for slurm.conf")
            setup.gen_cloud_conf(util.lkp)
            log.info("Generating new slurm.conf")
            setup.install_slurm_conf(util.lkp)
            log.info("Generating new slurmdbd.conf")
            setup.install_slurmdbd_conf(util.lkp)
            log.info("Generating new cloud_gres.conf")
            setup.gen_cloud_gres_conf(util.lkp)
            log.info("Generating new cgroup.conf")
            setup.install_cgroup_conf()

            # Send restart message to cluster topic
            message_json = json.dumps({
                "request":
                "restart",
                "timestamp":
                datetime.utcnow().isoformat(),
            })
            publish_message(project, util.cfg.pubsub_topic_id, message_json)
        elif lkp.instance_role == "compute":
            log.info(f"NO-OP for 'Request={data['request']}'.")
        elif lkp.instance_role == "login":
            log.info(f"NO-OP for 'Request={data['request']}'.")
        else:
            log.error(f"Unknown node role: {lkp.instance_role}")
コード例 #10
0
def main(config):
    prepare_dirs_and_logger(config)
    tf.set_random_seed(config.random_seed)

    from data import BatchManager
    batch_manager = BatchManager(config)

    trainer = Trainer_tumor(config, batch_manager)

    if config.is_train:
        save_config(config)
        trainer.train()
    else:
        if not config.load_path:
            raise Exception(
                "[!] You shou/home/tudorld specify `load_path` to load a pretrained model"
            )
        trainer.test()
コード例 #11
0
    def setup_model(self):
        """Creates a SFUN object.

            Returns: keras model

        """

        self.checkpoints_path = os.path.join(self._config['training']['session_dir'], 'checkpoints')
        if not os.path.exists(self.checkpoints_path):
            os.mkdir(self.checkpoints_path)
        self.history_filename = 'history_' + self._config['training']['session_dir'][self._config['training']['session_dir'].rindex('/') + 1:] + '.csv'

        self.model, inputs_mask = self.build_model(train_bn=self.train_bn)
        self.compile_sfun(self.model, inputs_mask, self._config['training']['lr'])


        self._config['dataset']['num_freq'] = self.num_freq
        config_path = os.path.join(self._config['training']['session_dir'], 'config.json')


        if os.path.exists(self.checkpoints_path) and util.dir_contains_files(self.checkpoints_path):

            checkpoints = os.listdir(self.checkpoints_path)
            checkpoints.sort(key=lambda x: os.stat(os.path.join(self.checkpoints_path, x)).st_mtime)
            last_checkpoint = checkpoints[-1]
            last_checkpoint_path = os.path.join(self.checkpoints_path, last_checkpoint)
            self.epoch_num = int(last_checkpoint[11:16])

            print('Loading Sound Field Network model from epoch: %d' % self.epoch_num)
            self.model.load_weights(last_checkpoint_path)

        else:

            print('Building new Sound Field Network model...')
            self.epoch_num = 0
            self.model.summary()

        if not os.path.exists(config_path):
            util.save_config(config_path, self._config)

        return self.model
コード例 #12
0
import os, datetime
from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from session import SqliteSessionInterface
import util

CONFIG_FILE = 'altium.cfg'

app = Flask(__name__)
CONFIG_PATH = os.path.join(app.root_path, CONFIG_FILE)
app.config.from_object('altium.config')
app.config.from_pyfile(CONFIG_PATH, silent=True)
util.save_config(app.config, CONFIG_PATH)

# Server-side sessions

path = app.config['SESSION_PATH']                   
path = os.path.join(app.root_path, '.sessions')
if not os.path.exists(path):
    os.mkdir(path)
    os.chmod(path, int('700', 8))
app.session_interface = SqliteSessionInterface(path)


# Initial check of the library to establish SVN data
library = util.SVNLibrary()
#library.check()
db = SQLAlchemy(app)

    
import hooks
コード例 #13
0
def run_training():
    '''train the Neural Network'''
    # sanity check
    assert (FLAGS.input_data_type == 'float' or FLAGS.input_data_type == 'int')
    assert (FLAGS.output_data_type == 'float'
            or FLAGS.output_data_type == 'int')
    # import the dataset
    data_sets = dataset.Datasets(FLAGS.data_dir, FLAGS.separate_file,
                                 FLAGS.input_data_type, FLAGS.output_data_type)
    #for hotspot training
    '''
    data_sets = dataset.Datasets(FLAGS.data_dir,
            FLAGS.separate_file,
            FLAGS.input_data_type, FLAGS.output_data_type,
            FLAGS.tile_size, FLAGS.num_maps)
    '''

    with tf.Graph().as_default():
        # placeholder
        input_pl, golden_pl = util.generate_placeholder(
            data_sets.num_in_neuron, data_sets.num_out_neuron,
            FLAGS.batch_size, FLAGS.input_data_type, FLAGS.output_data_type)
        # build graph
        if FLAGS.hidden1 == 0:
            assert (FLAGS.hidden2 == 0)
            outputs = util.layer('output_layer', input_pl,
                                 data_sets.num_in_neuron,
                                 data_sets.num_out_neuron, None)
        else:
            hidden1 = util.layer('hidden1', input_pl, data_sets.num_in_neuron,
                                 FLAGS.hidden1, util.fast_sigmoid)
            if FLAGS.hidden2 == 0:
                outputs = util.layer('output_layer', hidden1, FLAGS.hidden1,
                                     data_sets.num_out_neuron, None)
            else:
                hidden2 = util.layer('hidden2', hidden1, FLAGS.hidden1,
                                     FLAGS.hidden2, util.fast_sigmoid)
                outputs = util.layer('output_layer', hidden2, FLAGS.hidden2,
                                     data_sets.num_out_neuron, None)

        # loss
        #loss = bm.loss(outputs, golden_pl)
        loss = util.loss(outputs, golden_pl, FLAGS.benchmark)

        # train
        #train_op = bm.training(loss, FLAGS.learning_rate)
        train_op = util.training(loss, FLAGS.learning_rate)

        # accumulated error for one batch of data
        error = util.error(outputs, golden_pl, FLAGS.benchmark)

        # summary - not necessary
        summary = tf.merge_all_summaries()

        # init
        init = tf.initialize_all_variables()

        # sess
        sess = tf.Session()

        # summary writer - not necessary
        summary_writer = tf.train.SummaryWriter(FLAGS.log_dir, sess.graph)

        # everything built, run init
        sess.run(init)

        # start training
        #_, max_steps = data_sets.train.max_steps(FLAGS.batch_size)
        for step in xrange(FLAGS.max_steps):
            feed_dict = util.fill_feed_dict(data_sets.train, input_pl,
                                            golden_pl, FLAGS.batch_size)
            sess.run(train_op, feed_dict=feed_dict)

            # print the loss every 100 steps
            # write the summary
            # evaluate the model
            if not step % 100:
                print('step %d: loss = %.2f' %
                      (step, sess.run(loss, feed_dict=feed_dict)))

                summary_str = sess.run(summary, feed_dict=feed_dict)
                summary_writer.add_summary(summary_str, step)
                summary_writer.flush()
                '''
                print('training data evaluation')
                util.do_eval(sess, error,
                        input_pl, golden_pl,
                        FLAGS.batch_size, data_sets.train)
                '''
                print('validation data evaluation')
                util.do_eval(sess, error, input_pl, golden_pl,
                             FLAGS.batch_size, data_sets.validate)

        # final accuracy
        print('test data evaluation')
        util.do_eval(sess, error, input_pl, golden_pl, FLAGS.batch_size,
                     data_sets.test)

        # filename for saving
        savefile = str(data_sets.num_in_neuron) + "_" + str(
            FLAGS.hidden1) + "_" + str(FLAGS.hidden2) + "_" + str(
                data_sets.num_out_neuron) + ".txt"

        # save weights and biases
        util.save_config(sess, NUM_LAYERS, FLAGS.config_dir, savefile)

        # save trained output
        #util.save_output(sess, data_sets.train, outputs, FLAGS.data_dir)
        #need to fetch original input data
        output_save = sess.run(outputs,
                               feed_dict={input_pl: data_sets.input_data})
        np.savetxt(FLAGS.data_dir + "train_result/" + savefile,
                   output_save,
                   delimiter=" ")
コード例 #14
0
ファイル: cli.py プロジェクト: gitsound/gitsound
            for index, playlist in enumerate(playlists):
                print(str(index) + " |   " + playlist)
        elif (arg == 'remote'):
            playlists = user.get_playlist_names()
            for index, playlist in enumerate(playlists):
                print(str(index) + " |   " + playlist)
        else:
            print('Not yet implemented.')
            print('Show all playlists, local and remote')
    elif (cmd == 'select' and arg != None):
        ids = user.get_playlist_id(arg)
        config["current_playlist"]["uid"] = ids["uid"]
        config["current_playlist"]["pid"] = ids["pid"]
        config["current_playlist"]["name"] = user.get_playlist_name(arg)

        util.save_config(config)

        print('Set current playlist to ' + config["current_playlist"]["name"])
    elif (cmd == 'clone' and arg != None):
        ids = user.get_playlist_id(arg)
        config["current_playlist"]["uid"] = ids["uid"]
        config["current_playlist"]["pid"] = ids["pid"]
        config["current_playlist"]["name"] = user.get_playlist_name(arg)

        util.save_config(config)

        try:
            user.init_git_playlist(ids["uid"], ids["pid"])
            print('Cloned playlist ' + config["current_playlist"]["name"])
        except:
            print(config["current_playlist"]["name"] + ' already cloned.')
コード例 #15
0
ファイル: build_dictionary.py プロジェクト: rpeys/patient-viz
 def init(self, settings, settingsFile):
     for k in self._baseTypes.keys():
         self._codeTables[k] = self._baseTypes[k].init(settings)
     util.save_config(settings, settingsFile)
コード例 #16
0
ファイル: options.py プロジェクト: godfryd/funnyboat
    def run(self):
        done = False

        while not done:
            self.screen.blit(Options.sky, self.screen.get_rect())
            self.water.update()
            self.water_sprite.draw(self.screen)

            for i in xrange(len(self.menu)):
                self.render(i)

            cloud.update()

            cloud.draw(self.screen)

            rect = Options.logo.get_rect()
            rect.centerx = self.screen.get_rect().centerx
            rect.top = 0
            self.screen.blit(Options.logo, rect)

            image = util.smallfont.render("http://funnyboat.sourceforge.net/",
                                          True, (0, 0, 0))
            rect = image.get_rect()
            rect.midbottom = self.screen.get_rect().midbottom
            self.screen.blit(image, rect)

            pygame.display.flip()

            self.t += 1

            nextframe = False
            while not nextframe:
                pygame.event.post(pygame.event.wait())
                for event in pygame.event.get():
                    if event.type == QUIT or \
                        event.type == KEYDOWN and event.key == K_ESCAPE:
                        self.selection = -1
                        done = True
                        nextframe = True
                    elif event.type == NEXTFRAME:
                        nextframe = True
                    elif event.type == JOYAXISMOTION:
                        if event.axis == 1:
                            if event.value < -0.5:
                                self.move_up()
                            if event.value > 0.5:
                                self.move_down()
                        elif event.axis == 0:
                            if event.value < -0.5:
                                self.change_left()
                            if event.value > 0.5:
                                self.change_right()
                    elif event.type == JOYBUTTONDOWN:
                        if self.gamepad:
                            if self.gamepad.is_pressed('a', event):
                                self.change_right()
                            elif self.gamepad.is_pressed('b', event):
                                done = True
                        elif event.button == 0:
                            #done = True
                            self.change_right()
                        elif event.button == 1:
                            done = True
                    elif event.type == KEYDOWN:
                        if event.key == K_UP:
                            self.move_up()
                        elif event.key == K_DOWN:
                            self.move_down()
                        elif event.key == K_LEFT:
                            self.change_left()
                        elif event.key == K_RIGHT:
                            self.change_right()
                        elif self.selection == Options.NAME:
                            if event.key == K_BACKSPACE:
                                if len(Variables.name) != 0:
                                    Variables.name = Variables.name[:-1]
                            elif event.key == K_SPACE or event.unicode != " " and event.unicode >= u' ':
                                if len(Variables.name) < 32:
                                    Variables.name += event.unicode
                            self.refresh()
                        elif event.key == K_SPACE or event.key == K_RETURN:
                            #done = True
                            self.change_right()

        util.save_config()
        return self.selection
コード例 #17
0
 def init(self, settings, settingsFile):
 	for k in self._baseTypes.keys():
         self._codeTables[k] = self._baseTypes[k].init(settings)
     util.save_config(settings, settingsFile)
コード例 #18
0
ファイル: run.py プロジェクト: JacobImai/learning_to_run
def train(config, trial_dir=None, visualize=False, overwrite_config=False):
    t_agent = config["agent"]
    assert t_agent in SUPPORTED_AGENTS, "Agent type {} not supported".format(
        t_agent)

    # prepare trial environment
    pid = os.getpid()
    trial_name = "{}_pid{}".format(t_agent, pid)
    logger, log_dir = prepare_for_logging(trial_name)

    # create agent
    if "max_obstacles" not in config:
        config["max_obstacles"] = 3
    env = NIPS(visualize, max_obstacles=config["max_obstacles"])
    logger.info("pid={}, env={}".format(pid, id(env)))

    # to train from scratch or fine tune
    fine_tuning = False
    if trial_dir is not None:
        config_file = os.path.join(trial_dir, "config.yaml")
        if not os.path.exists(config_file):
            convert_legacy_config(trial_dir, t_agent)
        existing_config = util.load_config(config_file)
        fine_tuning = True
        if overwrite_config:
            logger.info("Overwrite config from file {}".format(trial_dir))
            for k, v in config.iteritems():
                existing_config[k] = v
        config = existing_config
        config["model_dir"] = trial_dir

    # save config to the trial folder
    util.print_settings(logger, config, env)
    config_file = os.path.join(log_dir, "config.yaml")
    util.save_config(config_file, config)

    # instantiate an agent
    config["logger"] = logger
    config["log_dir"] = log_dir
    if t_agent == "DDPG":
        from ddpg import DDPG
        agent = DDPG(env, config)
    elif t_agent == "TRPO":
        from trpo import TRPO
        agent = TRPO(env, config)
    else:
        # because of the assertion above, this should never happen
        raise ValueError("Unsupported agent type: {}".format(t_agent))

    # learn
    if fine_tuning:
        util.print_sec_header(logger, "Continual training")
        agent.set_state(config)
    else:
        util.print_sec_header(logger, "Training from scratch")
    reward_hist, steps_hist = agent.learn(
        total_episodes=config["total_episodes"])
    env.close()

    # send result
    img_file = os.path.join(log_dir, "train_stats.png")
    util.plot_stats(reward_hist, steps_hist, img_file)
    log_file = os.path.join(log_dir, "train.log")
    util.send_email(log_dir, [img_file], [log_file], config)

    logger.info("Finished (pid={}).".format(pid))
コード例 #19
0
ファイル: email_daily_changes.py プロジェクト: raprasad/iem
def drive_changelog(regime, yesterday, html):
    """ Do something """
    drive = util.get_driveclient()

    start_change_id = util.CONFIG.get("changestamp_"+regime, "1")

    html += """<p><table border="1" cellpadding="3" cellspacing="0">
<thead>
<tr><th>Changestamp</th><th>Time</th><th>Author</th><th>Resource</th></tr>
</thead>
<tbody>"""

    largestChangeId = -1
    hits = 0
    page_token = None
    while True:
        param = {}
        if start_change_id:
            param['startChangeId'] = start_change_id
        if page_token:
            param['pageToken'] = page_token
        print(("Requesting start_change_id: %s "
               "largestChangeId: %s page_token: %s"
               ) % (start_change_id, largestChangeId, page_token))
        response = drive.changes().list(**param).execute()
        largestChangeId = response['largestChangeId']
        page_token = response.get('nextPageToken')
        for item in response['items']:
            changestamp = item['id']
            if item['deleted']:
                continue
            # don't do more work when this file actually did not change
            modifiedDate = datetime.datetime.strptime(
                item['file']['modifiedDate'][:19], '%Y-%m-%dT%H:%M:%S')
            modifiedDate = modifiedDate.replace(tzinfo=pytz.timezone("UTC"))
            if modifiedDate < yesterday:
                continue
            # Need to see which base folder this file is in!
            parentid = get_base_folder_id(regime, drive, item['fileId'])
            if parentid != util.CONFIG[regime]['basefolder']:
                print(('Skipping %s as it is other project'
                       ) % (repr(item['file']['title']), ))
                continue
            uri = item['file']['alternateLink']
            title = item['file']['title'].encode('ascii', 'ignore')
            author = item['file']['lastModifyingUserName']
            localts = modifiedDate.astimezone(pytz.timezone("America/Chicago"))
            hits += 1
            html += """
<tr><td>%s</td><td>%s</td><td>%s</td><td><a href="%s">%s</a></td></tr>
            """ % (changestamp, localts.strftime("%-d %b %I:%M %P"),
                   author, uri, title)
        if not page_token:
            break

    util.CONFIG['changestamp_'+regime] = changestamp
    if hits == 0:
        html += """<tr><td colspan="4">No Changes Found...</td></tr>\n"""

    html += """</tbody></table>"""

    util.save_config()
    return html
コード例 #20
0
def main(config):
    logger = util.create_logger(name='train_log', log_dir=config.log_dir)
    if not os.path.exists(config.log_dir):
        os.makedirs(config.log_dir, exist_ok=True)
    util.save_config(config.log_dir, config.config)
    logger.info('Logs and models will be save in {}.'.format(config.log_dir))

    rnd = np.random.RandomState(seed=config.seed)
    solution = util.create_solution(device='cpu:0')
    num_params = solution.get_num_params()
    if config.load_model is not None:
        solution.load(config.load_model)
        print('Loaded model from {}'.format(config.load_model))
        init_params = solution.get_params()
    else:
        init_params = None
    solver = cma.CMAEvolutionStrategy(
        x0=np.zeros(num_params) if init_params is None else init_params,
        sigma0=config.init_sigma,
        inopts={
            'popsize': config.population_size,
            'seed': config.seed if config.seed > 0 else 42,
            'randn': np.random.randn,
        },
    )

    best_so_far = -float('Inf')
    ii32 = np.iinfo(np.int32)
    repeats = [config.reps] * config.population_size

    device_type = 'cpu' if args.num_gpus <= 0 else 'cuda'
    num_devices = mp.cpu_count() if args.num_gpus <= 0 else args.num_gpus
    with mp.get_context('spawn').Pool(
            initializer=worker_init,
            initargs=(args.config, device_type, num_devices),
            processes=config.num_workers,
    ) as pool:
        for n_iter in range(config.max_iter):
            params_set = solver.ask()
            task_seeds = [rnd.randint(0, ii32.max)] * config.population_size
            fitnesses = []
            ss = 0
            while ss < config.population_size:
                ee = ss + min(config.num_workers, config.population_size - ss)
                fitnesses.append(
                    pool.map(func=get_fitness,
                             iterable=zip(params_set[ss:ee], task_seeds[ss:ee],
                                          repeats[ss:ee])))
                ss = ee
            fitnesses = np.concatenate(fitnesses)
            if isinstance(solver, cma.CMAEvolutionStrategy):
                # CMA minimizes.
                solver.tell(params_set, -fitnesses)
            else:
                solver.tell(fitnesses)
            logger.info(
                'Iter={0}, '
                'max={1:.2f}, avg={2:.2f}, min={3:.2f}, std={4:.2f}'.format(
                    n_iter, np.max(fitnesses), np.mean(fitnesses),
                    np.min(fitnesses), np.std(fitnesses)))

            best_fitness = max(fitnesses)
            if best_fitness > best_so_far:
                best_so_far = best_fitness
                model_path = os.path.join(config.log_dir, 'best.npz')
                save_params(solver=solver,
                            solution=solution,
                            model_path=model_path)
                logger.info(
                    'Best model updated, score={}'.format(best_fitness))

            if (n_iter + 1) % config.save_interval == 0:
                model_path = os.path.join(config.log_dir,
                                          'iter_{}.npz'.format(n_iter + 1))
                save_params(solver=solver,
                            solution=solution,
                            model_path=model_path)
コード例 #21
0
ファイル: options.py プロジェクト: italomaia/turtle-linux
    def run(self):
        done = False

        while not done:
            self.screen.blit(Options.sky, self.screen.get_rect())
            self.water.update()
            self.water_sprite.draw(self.screen)

            for i in xrange(len(self.menu)):
                self.render(i)

            cloud.update()

            cloud.draw(self.screen)

            rect = Options.logo.get_rect()
            rect.centerx = self.screen.get_rect().centerx
            rect.top = 0
            self.screen.blit(Options.logo, rect)

            image = util.smallfont.render("http://funnyboat.sourceforge.net/", True, (0,0,0))
            rect = image.get_rect()
            rect.midbottom = self.screen.get_rect().midbottom
            self.screen.blit(image, rect)

            pygame.display.flip()

            self.t += 1

            nextframe = False
            while not nextframe:
                pygame.event.post(pygame.event.wait())
                for event in pygame.event.get():
                    if event.type == QUIT or \
                        event.type == KEYDOWN and event.key == K_ESCAPE:
                        self.selection = -1
                        done = True
                        nextframe = True
                    elif event.type == NEXTFRAME:
                        nextframe = True
                    elif event.type == JOYAXISMOTION:
                        if event.axis == 1:
                            if event.value < -0.5:
                                self.move_up()
                            if event.value > 0.5:
                                self.move_down()
                        elif event.axis == 0:
                            if event.value < -0.5:
                                self.change_left()
                            if event.value > 0.5:
                                self.change_right()
                    elif event.type == JOYBUTTONDOWN:
                        if event.button == 0:
                            #done = True
                            self.change_right()
                        elif event.button == 1:
                            done = True
                    elif event.type == KEYDOWN:
                        if event.key == K_UP:
                            self.move_up()
                        elif event.key == K_DOWN:
                            self.move_down()
                        elif event.key == K_LEFT:
                            self.change_left()
                        elif event.key == K_RIGHT:
                            self.change_right()
                        elif self.selection == Options.NAME:
                            if event.key == K_BACKSPACE:
                                if len(Variables.name) != 0:
                                    Variables.name = Variables.name[:-1]
                            elif event.key == K_SPACE or event.unicode != " " and event.unicode>=u' ':
                                if len(Variables.name) < 32:
                                    Variables.name += event.unicode
                            self.refresh()
                        elif event.key == K_SPACE or event.key == K_RETURN:
                            #done = True
                            self.change_right()

        util.save_config()
        return self.selection
コード例 #22
0
 def save(self):
     util.save_config("telegram_bot.json", self.config)
コード例 #23
0
ファイル: email_daily_changes.py プロジェクト: muthulatha/iem
def drive_changelog(regime, yesterday, html):
    """ Do something """
    drive = util.get_driveclient()
    folders = util.get_folders(drive)
    start_change_id = util.CONFIG.get("changestamp_" + regime, "1")

    html += """<p><table border="1" cellpadding="3" cellspacing="0">
<thead>
<tr><th>Folder</th><th>Resource</th></tr>
</thead>
<tbody>"""

    largestChangeId = -1
    hits = 0
    page_token = None
    param = {"includeDeleted": False, "maxResults": 1000}
    while True:
        if start_change_id:
            param["startChangeId"] = start_change_id
        if page_token:
            param["pageToken"] = page_token
        print(
            ("[%s] start_change_id: %s largestChangeId: %s page_token: %s")
            % (regime, start_change_id, largestChangeId, page_token)
        )
        response = drive.changes().list(**param).execute()
        largestChangeId = response["largestChangeId"]
        page_token = response.get("nextPageToken")
        for item in response["items"]:
            changestamp = item["id"]
            if item["deleted"]:
                continue
            # don't do more work when this file actually did not change
            modifiedDate = datetime.datetime.strptime(item["file"]["modifiedDate"][:19], "%Y-%m-%dT%H:%M:%S")
            modifiedDate = modifiedDate.replace(tzinfo=pytz.timezone("UTC"))
            if modifiedDate < yesterday:
                continue
            # Need to see which base folder this file is in!
            isproject = False
            for parent in item["file"]["parents"]:
                if parent["id"] not in folders:
                    print(("[%s] file: %s has unknown parent: %s") % (regime, item["id"], parent["id"]))
                    continue
                if folders[parent["id"]]["basefolder"] == util.CONFIG[regime]["basefolder"]:
                    isproject = True
            if not isproject:
                print(("[%s] %s skipped") % (regime, repr(item["file"]["title"])))
                continue
            uri = item["file"]["alternateLink"]
            title = item["file"]["title"].encode("ascii", "ignore")
            localts = modifiedDate.astimezone(pytz.timezone("America/Chicago"))
            hits += 1
            pfolder = item["file"]["parents"][0]["id"]
            html += """
<tr>
<td><a href="https://docs.google.com/folderview?id=%s&usp=drivesdk">%s</a></td>
<td><a href="%s">%s</a></td></tr>
            """ % (
                pfolder,
                folders[pfolder]["title"],
                uri,
                title,
            )
            hit = False
            if "version" in item["file"] and item["file"]["mimeType"] != FMIME:
                lastmsg = ""
                try:
                    revisions = drive.revisions().list(fileId=item["file"]["id"]).execute()
                except:
                    print(("[%s] file %s (%s) failed revisions") % (regime, title, item["file"]["mimeType"]))
                    revisions = {"items": []}
                for item2 in revisions["items"]:
                    md = datetime.datetime.strptime(item2["modifiedDate"][:19], "%Y-%m-%dT%H:%M:%S")
                    md = md.replace(tzinfo=pytz.timezone("UTC"))
                    if md < yesterday:
                        continue
                    localts = md.astimezone(pytz.timezone("America/Chicago"))
                    if "lastModifyingUser" not in item2:
                        print(("[%s] file: %s has no User? %s") % (regime, title, item2))
                        continue
                    luser = item2["lastModifyingUser"]
                    hit = True
                    thismsg = """
    <tr><td colspan="2"><img src="%s" style="height:25px;"/> %s by
     %s (%s)</td></tr>
                    """ % (
                        (luser["picture"]["url"] if "picture" in luser else ""),
                        localts.strftime("%-d %b %-I:%M %p"),
                        luser["displayName"],
                        luser["emailAddress"],
                    )
                    if thismsg != lastmsg:
                        html += thismsg
                    lastmsg = thismsg
            # Now we check revisions
            if not hit:
                luser = item["file"]["lastModifyingUser"]
                html += """
<tr><td colspan="2"><img src="%s" style="height:25px;"/> %s by
 %s (%s)</td></tr>
                """ % (
                    luser["picture"]["url"] if "picture" in luser else "",
                    localts.strftime("%-d %b %-I:%M %p"),
                    luser["displayName"],
                    luser.get("emailAddress", "n/a"),
                )
        if not page_token:
            break

    util.CONFIG["changestamp_" + regime] = changestamp
    if hits == 0:
        html += """<tr><td colspan="5">No Changes Found...</td></tr>\n"""

    html += """</tbody></table>"""

    util.save_config()
    return html
コード例 #24
0
def train(config_path):
    """ Trains a model for a maximum of config.max_epochs epochs

    Args:
    config_path: string, path to a config.json file

    """

    # Load configuration
    if not os.path.exists(config_path):
        print 'Error: No configuration file present at specified path.'
        return
        
    config = util.load_config(config_path)
    print 'Loaded configuration from: %s' % config_path

    # Create session directory
    if 'session_dir' not in config['training'] or os.path.exists(config['training']['session_dir']): create_new_session(config)

    # Direct all output to screen and log file
    util.set_print_to_screen_and_file(
        os.path.join(config['training']['session_dir'], 'session.log'))

    model = fcpn.FCPN(config)
    dataset = data.Dataset(config)
    dataset.prepare(config['dataset']['refresh_cache'])

    config['model']['pointnet']['num'] = np.prod(model.get_feature_volume_shape(
        config['dataset']['training_samples']['spatial_size'], config['model']['pointnet']['spacing'], 1))

    enqueue_op, queue_placeholders, queue_batch_placeholders, get_queue_size_op = setup_queue(
        config['dataset']['training_samples']['num_points'] + config['model']['pointnet']['num'], dataset.get_num_output_voxels(), config['training']['batch_size'])

    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = config['training']['gpu']['allow_growth']
    tf_config.allow_soft_placement = config['training']['gpu']['allow_soft_placement']

    sess = tf.Session(config=tf_config)

    with sess.as_default():
        with tf.device('/gpu:' + str(config['training']['gpu']['id'])):

            # Batch normalization
            batch_i = tf.Variable(0, name='batch_i')
            batch_normalization_decay = util.get_batch_normalization_decay(
                batch_i, config['training']['batch_size'], config['training']['optimizer']['batch_normalization']['initial_decay'], config['training']['optimizer']['batch_normalization']['decay_rate'], config['training']['optimizer']['batch_normalization']['decay_step'])
            tf.summary.scalar('batch_normalization_decay',
                              batch_normalization_decay)
            is_training_pl = tf.placeholder(tf.bool, shape=())
            
            # Build model
            pred_op = model.build_model(config['training']['batch_size'], config['dataset']['training_samples']['spatial_size'], queue_batch_placeholders['input_points_pl'],
                                        queue_batch_placeholders['input_features_pl'], is_training_pl, dataset.get_num_learnable_classes(), batch_normalization_decay)
            
            # Loss
            loss_op = model.get_loss(
                pred_op, queue_batch_placeholders['output_voxels_pl'], queue_batch_placeholders['output_voxel_weights_pl'])

            model.print_num_parameters()
            model.print_layer_weights()

            # Confusion matrix
            confusion_matrix_op, confusion_matrix_update_op, confusion_matrix_clear_op = model.get_confusion_matrix_ops(
                pred_op, queue_batch_placeholders['output_voxels_pl'], dataset.get_num_learnable_classes(), dataset.get_empty_class())

            # Optimizer
            learning_rate_op = util.get_learning_rate(
                batch_i, config['training']['batch_size'], config['training']['optimizer']['learning_rate']['initial'], config['training']['optimizer']['learning_rate']['decay_rate'], config['training']['optimizer']['learning_rate']['decay_step'])
            tf.summary.scalar('learning_rate', learning_rate_op)

            optimizer_op = tf.train.AdamOptimizer(learning_rate_op)
            if config['training']['train_upsampling_only']:
                upsampling_weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "upsampling")
                optimization_op = optimizer_op.minimize(loss_op, var_list=upsampling_weights, global_step=batch_i)
            else:
                optimization_op = optimizer_op.minimize(loss_op, global_step=batch_i)

            # Summary and Saving
            saver = tf.train.Saver(max_to_keep=config['training']['checkpoints_to_keep'])
            merged_summary_op = tf.summary.merge_all()
            summary_writers = {
                'train': tf.summary.FileWriter(os.path.join(config['training']['session_dir'], 'train'), sess.graph),
                'val': tf.summary.FileWriter(os.path.join(config['training']['session_dir'], 'val'))
            }

            # Initialize variables in graph
            init_g = tf.global_variables_initializer()
            init_l = tf.local_variables_initializer()
            sess.run([init_g, init_l], {is_training_pl: True})

            # Restore model weights from disk
            if config['training']['checkpoint_path']:

                weights_to_be_restored = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)

                # If finetuning on a new dataset, don't load last layer weights or confusion matrix
                if config['training']['finetune_new_classes']:
                    final_layer_weights =  tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="upsampling/15cm_to_5cm/final_conv")
                    confusion_variables =  tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="confusion")
                    weights_to_be_restored = list(set(weights_to_be_restored) - set(final_layer_weights) - set(confusion_variables))

                restorer = tf.train.Saver(var_list=weights_to_be_restored)
                restorer.restore(sess, config['training']['checkpoint_path'])
                print 'Model weights restored from checkpoint file: %s' % config['training']['checkpoint_path']

            num_batches = {
                'train': dataset.get_num_batches('train', config['training']['batch_size']),
                'val': dataset.get_num_batches('val', config['training']['batch_size'])
            }
            ops = {
                'train': [loss_op, merged_summary_op, optimization_op],
                'val': [loss_op, merged_summary_op, confusion_matrix_update_op]
            }

            # Start loading samples into FIFO queue
            coord, loader_thread = start_data_loader(
                sess, enqueue_op, queue_placeholders, model, dataset, config)

            # Save configuration file (with derived parameters) to session directory
            util.save_config(os.path.join(config['training']['session_dir'], 'config.json'), config)                

            # Start training
            sample_i = 0
            for epoch_i in range(config['training']['max_epochs']):
                print '\nEpoch: %d' % epoch_i

                for s in ['train', 'val']:

                    is_training = (s == 'train')

                    if s == 'train':
                        is_training = True
                        print 'Training set\nBatch/Total Batches | Loss | Items in Queue'
                    else:                        
                        print 'Validation set\nBatch/Total Batches | Loss | Items in Queue'

                    for epoch_batch_i in range(num_batches[s]):

                        loss, summary, _ = sess.run(
                            ops[s], feed_dict={is_training_pl: is_training})

                        # Log statistics
                        if epoch_batch_i % config['training']['log_every_n_batches'] == 0:
                            summary_writers[s].add_summary(summary, sample_i)
                            summary_writers[s].flush()
                            print '%i/%i | %f | %d' % (epoch_batch_i + 1, num_batches[s], loss, get_queue_size_op.eval())

                        # Only do when in training phase
                        if s == 'train':
                            sample_i += config['training']['batch_size']

                            # Save snapshot of model
                            if epoch_batch_i % config['training']['save_every_n_batches'] == 0:
                                save_path = saver.save(sess, os.path.join(
                                    config['training']['session_dir'], "model.ckpt"), global_step=epoch_i)
                                print 'Checkpoint saved at batch %d to %s' % (
                                    epoch_batch_i, save_path)

                    # Only do at the end of the validation phase
                    if s == 'train':
                        save_path = saver.save(sess, os.path.join(
                            config['training']['session_dir'], "model.ckpt"), global_step=epoch_i)
                        print 'Checkpoint saved at batch %d to %s' % (epoch_batch_i, save_path)
                    elif s == 'val':
                        confusion_matrix = confusion_matrix_op.eval()

                        # Compute and print per-class statistics
                        true_positives, false_negatives, false_positives, ious = util.compute_per_class_statistics(confusion_matrix[:dataset.get_empty_class(),:dataset.get_empty_class()])
                        util.pretty_print_confusion_matrix(confusion_matrix, dataset.get_learnable_classes_strings())
                        util.pretty_print_per_class_statistics(dataset.get_learnable_classes_strings()[:dataset.get_empty_class()], true_positives, false_negatives, false_positives, ious)
                        avg_iou = np.mean(ious)

                        summary = tf.Summary()
                        summary.value.add(
                            tag='avg_iou', simple_value=avg_iou)

                        # Add per-class IoUs to summary to be viewable in Tensorboard
                        for class_i, class_label in enumerate(dataset.get_learnable_classes_strings()[:dataset.get_empty_class()]):
                            summary.value.add(
                                tag=class_label + '_iou', simple_value=ious[class_i])

                        summary_writers[s].add_summary(summary, sample_i)
                        summary_writers[s].flush()
                        confusion_matrix_clear_op.eval()

            coord.request_stop()
            coord.join([loader_thread])

            print 'Training complete.'