def test_n_for_b(self): p_x_train, p_x_test, x_train, x_test, y_train, y_test, im, om = \ util.set_sample(1, 1, 100, 40) bc = b_classfy.b_classfy([im, 200, 150, om], isClassification=True) bc.pre_training(p_x_train, p_x_test) self.assertGreater(bc.learn(x_train, y_train, x_test, y_test), 0.8)
def test_auto_encoder(self): p_x_train, p_x_test, x_train, x_test, y_train, y_test, im, om = \ util.set_sample(60, 1, 40, 20, split_mode='pp', offset_cancel=True, same_sample=10) bc = auto_encoder.Autoencoder([im, 200, 150, im], epoch=40, is_classification=False, nobias=False) bc.pre_training(p_x_train, p_x_test) bc.learn(x_train, x_train, x_test, x_test) #bc.disp_w() self.assertLess(bc.final_test(x_test[0:9], x_test[0:9], False), 0.1)
epoch=10, **keywords): AbstractChain.__init__(self, n_units=n_units, is_classification=is_classification, epoch=epoch, batch_size=batch_size, visualize=True, **keywords) #configuration self.plot_enable = plot_enable self.save_as_png = save_as_png if save_as_png and not os.path.exists(util.IMAGE_DIR): os.mkdir(util.IMAGE_DIR) # Save final self.model if pickle_enable: pickle.dump(self.model, open('self.model', 'w'), -1) if __name__ == '__main__': p_x_train, p_x_test, x_train, x_test, y_train, y_test, im, om = \ util.set_sample(1, 1, 100, 40) bc = b_classfy([im, 150, 150, om], isClassification=True) bc.pre_training(p_x_train, p_x_test) bc.learn(x_train, y_train, x_test, y_test) #bc.disp_w() bc.final_test(x_test[0:9], y_test[0:9])
if not isinstance(x_data, Variable): x_data = Variable(x_data) for i, model in enumerate(self): if i == len(self) - 1 and self.pre_trained: x_data = model(x_data) else: x_data = F.dropout(F.relu(model(x_data)), train=train) return x_data if __name__ == '__main__': p_x_train0, p_x_test0, x_train0, x_test0, y_train0, y_test0, im, om = \ util.set_sample(60, 1, 40, 20, split_mode='pp', #offset_cancel=True, first_cancel=True, #normal_constant=1709.0, same_sample=70, spec_target=0, ) p_x_train1, p_x_test1, x_train1, x_test1, y_train1, y_test1, im, om = \ util.set_sample(60, 1, 40, 20, split_mode='pp', first_cancel=True, div_reference=True, #normal_constant=1709.0, ) bc = Autoencoder([im, 150, 120, im], epoch=100, is_classification=False, nobias=True)