def train(self, training_dataset):
     feature_summary = {"class_1": [], "class_2": []}
     for cls, feature_matrix in training_dataset.iteritems():
         for feature in feature_matrix:
             # Append the whole feature vector (all values for the feature in the class for the training data
             feature_summary[cls].append((feature, util.stdev(feature)))
     return feature_summary
コード例 #2
0
def run_sim():
    global t, i
    state['series'] = []

    t = config.DATE_START - timedelta(days=1)
    i = -1
    while t < datetime.now() + timedelta(days=365):
        t += timedelta(days=1)
        if t not in btc.usd_d:
            continue

        for code in scripts:
            exec_script(code)

        i += 1
        state['series'].append((t, state['base_tether'] + state['base_ntx']))

    std = util.stdev(state['series'][100:-365], btc.mcap)
    if std < best['stdev']:
        best['series'] = state['series']
        best['stdev'] = std
        best['world'] = copy.deepcopy(world)
        print()
        print("stdev = ", best['stdev'])
        pprint(best['world'])

        lines['sim'].set_ydata([a[1] for a in best['series']])
        fig.canvas.draw()
        fig.canvas.flush_events()
コード例 #3
0
    def markerReliabilityCheck(self,
                               markerCount,
                               alphaWeight=1,
                               betaWeight=5,
                               lengthWeight=2):
        markers = {}
        for i in range(markerCount):
            ms = super(Tobo, self).see_cube()
            for m in ms:
                mCode = str(m.info.code)
                if mCode in markers:
                    markers[mCode]["marker"].append(m)
                    markers[mCode]["alpha"].append(m.centre.rot_y)
                    markers[mCode]["beta"].append(m.orientation.rot_y)
                    markers[mCode]["length"].append(m.centre.dist)

                else:
                    markers.update({
                        mCode: {
                            "marker": [m],
                            "alpha": [m.centre.rot_y],
                            "beta": [m.orientation.rot_y],
                            "length": [m.centre.dist]
                        }
                    })
        for key in list(markers):
            mDict = markers[key]

            sqrtN = math.sqrt(len(mDict["marker"]))

            alphaXBar = util.mean(mDict["alpha"])
            alphaSd = util.stdev(mDict["alpha"]) / sqrtN
            betaXBar = util.mean(mDict["beta"])
            betaSd = util.stdev(mDict["beta"]) / sqrtN
            lengthXBar = util.mean(mDict["length"])
            lengthSd = util.stdev(mDict["length"]) / sqrtN

            error = (alphaWeight * alphaSd + betaWeight * betaSd +
                     lengthWeight * lengthSd) / (alphaWeight + betaWeight +
                                                 lengthWeight)
            for m in mDict["marker"]:
                m.error = error
コード例 #4
0
ファイル: money.py プロジェクト: flowcoin/kriptomist
def get_power(tx, mcap0, mcap, ref_mcap):
    delta = 0.01
    p = 1 - delta
    best = (2**256, 0)
    while p < 2.4:
        p += delta
        s = [(a[0], (mcap[i][1] / mcap0) * a[1]**p) for i, a in enumerate(tx)]
        stdev = util.stdev(s, ref_mcap)
        if stdev < best[0]:
            best = (stdev, p)
    return best[1]
 def train(self, training_dataset):
     """
     Calculates the mean and stdev of each feature in each class
     :param training_dataset: A n*m matrix of n features and m training items
     :return: a dictionary containing lists of the expected value and standard deviation for each feature in each class
     """
     feature_summary = {"class_1": [], "class_2": []}
     for cls, feature_matrix in training_dataset.iteritems():
         for feature in feature_matrix:
             feature_summary[cls].append((util.mean(feature), util.stdev(feature)))
     self.training_params = feature_summary
     return feature_summary
コード例 #6
0
import util
import math

NUM_TESTS = 10


def startBench(coroutines) -> int:
    return int(util.run('bench0', [coroutines])[2])


print('--Start go bench--')
util.build_go('go/bench0.go')

time = [startBench('100000') for i in range(NUM_TESTS)]

mean, std = util.stdev(time)

print('Result: {} +/- {}'.format(mean, std))

util.remove('bench0')
コード例 #7
0
import util
import math

NUM_TESTS = 10


def startBench(coroutines) -> int:
    return int(util.run('benchSwitch', [coroutines])[7])


print('--Start go bench--')
util.build_go('go/benchSwitch.go')

switchesPerSecond = [startBench('100') for i in range(NUM_TESTS)]

mean, std = util.stdev(switchesPerSecond)

print('Result: {} +/- {}'.format(mean, std))

util.remove('benchSwitch')