コード例 #1
0
def captcha2text(image_list, height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    """
    验证码图片转化为文本
    :param image_list:
    :param height:
    :param width:
    :return:
    """
    x = tf.placeholder(tf.float32, [None, height * width])
    keep_prob = tf.placeholder(tf.float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('model/'))
        predict = tf.argmax(
            tf.reshape(y_conv,
                       [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict,
                               feed_dict={
                                   x: image_list,
                                   keep_prob: 1
                               })
        vector_list = vector_list.tolist()
        text_list = [vec2text(vector) for vector in vector_list]
        return text_list
コード例 #2
0
def captcha2text(height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    '''
    验证码图片转化为文本
    :param image_list:
    :param height:
    :param width:
    :return:
    '''
    x = tf.placeholder(tf.float32, [None, height * width])
    keep_prob = tf.placeholder(tf.float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, RESTORE_PATH)
        success = 0
        error = 0
        for num in range(0, len(os.listdir(IMAGE_TEST_PATH))):
            text, image = read_dir_image_for_position(num, IMAGE_TEST_PATH)
            image = convert2gray(image)
            image = image.flatten() / 255
            image = [image]
            predict = tf.argmax(
                tf.reshape(
                    y_conv,
                    [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
            vector_list = sess.run(predict, feed_dict={x: image, keep_prob: 1})
            vector_list = vector_list.tolist()
            pre_text = [vec2text(vector) for vector in vector_list]
            if (text == ''.join(pre_text)):
                success += 1
            else:
                error += 1
            print('Label:', text, ' Predict:', pre_text)
        print('total:', success + error, ',success:', success, ',error:',
              error)
コード例 #3
0
def image2text(image, height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    pre_text = '1111'
    tf.reset_default_graph()
    x = tf.placeholder(tf.float32, [None, height * width])
    keep_prob = tf.placeholder(tf.float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, RESTORE_PATH)
        image = convert2gray(image)
        image = image.flatten() / 255
        image = [image]
        predict = tf.argmax(
            tf.reshape(y_conv,
                       [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict, feed_dict={x: image, keep_prob: 1})
        vector_list = vector_list.tolist()
        pre_text = [vec2text(vector) for vector in vector_list]
    return pre_text
コード例 #4
0
ファイル: test.py プロジェクト: L3afMe/NEATCaptcha
def captcha2text(image_list, height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    if not isdir('./model'):
        print('Model directory does not exists.')
        return
    x = placeholder(float32, [None, height * width])
    keep_prob = placeholder(float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = Saver()
    with Session() as sess:
        saver.restore(sess, latest_checkpoint('./model/'))
        predict = argmax(reshape(
            y_conv, [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict,
                               feed_dict={
                                   x: image_list,
                                   keep_prob: 1
                               })
        vector_list = vector_list.tolist()
        text_list = [vec2text(vector) for vector in vector_list]
        return text_list
コード例 #5
0
# -*- coding:utf-8 -*-
import numpy as np
from PIL import Image
from util import vec2text, text2vec
import tensorflow as tf

img = Image.open('./q7wy.jpg')
img_data = np.array(img)
# if len(img_data) > 2:
#     img_data = np.mean(img_data, -1)
#

# img = Image.fromarray(img_data)
# img.show()
# print(img_data.shape)

code = '1234'

vec2 = text2vec(code)
print(vec2)
y = vec2text(vec2)
# t = tf.reshape(code, [2, 2])
print(y)