コード例 #1
0
ファイル: model.py プロジェクト: ZombaSY/DeepLPF
    def forward(self, predicted_img_batch, target_img_batch):
        """Forward function for the DeepLPF loss

        :param predicted_img_batch: 
        :param target_img_batch: Tensor of shape BxCxWxH
        :returns: value of loss function
        :rtype: float

        """
        if predicted_img_batch.shape[2] != target_img_batch.shape[2]:
            target_img_batch = target_img_batch.transpose(2, 3)

        num_images = target_img_batch.shape[0]
        target_img_batch = target_img_batch

        ssim_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        l1_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))

        for i in range(0, num_images):

            target_img = target_img_batch[i, :, :, :].cuda()
            predicted_img = predicted_img_batch[i, :, :, :].cuda()

            predicted_img_lab = ImageProcessing.rgb_to_lab(
                predicted_img.squeeze(0))
            target_img_lab = ImageProcessing.rgb_to_lab(target_img.squeeze(0))

            target_img_L_ssim = target_img_lab[0, :, :].unsqueeze(0)
            predicted_img_L_ssim = predicted_img_lab[0, :, :].unsqueeze(0)
            target_img_L_ssim = target_img_L_ssim.unsqueeze(0)
            predicted_img_L_ssim = predicted_img_L_ssim.unsqueeze(0)

            ssim_value = self.compute_msssim(predicted_img_L_ssim,
                                             target_img_L_ssim)
            ssim_loss_value += (1.0 - ssim_value)

            l1_loss_value += F.l1_loss(predicted_img_lab, target_img_lab)

        l1_loss_value = l1_loss_value / num_images
        ssim_loss_value = ssim_loss_value / num_images
        deeplpf_loss = l1_loss_value + 1e-3 * ssim_loss_value
        return deeplpf_loss
コード例 #2
0
ファイル: views.py プロジェクト: cmhuang/once-upon-a-time
def upload(request):
    color_dict = {9:"r", 8:"rp", 7:"p", 6:"pb", 5:"b", 4:"bg", 3:"g", 2:"gy", 1:"y", 0:"yr"}
    
    if request.method == 'GET':
        form = LookUploadForm()
        return render_to_response('looks/upload.html',
                                  {'form': form },
                                  context_instance=RequestContext(request))
    elif request.method == 'POST':
        form = LookUploadForm(request.POST, request.FILES)    
        if form.is_valid():
            lookfile = request.FILES['look_photo']
            filename = settings.MEDIA_ROOT + '%s/%s' % ( 'looks', lookfile.name)
            #resize file
            resizedfile = resize_image(lookfile)
            #save to db
            look = form.save(commit=False)
            if len(form.data['look_description']) > 100:
                look.look_short_desc = form.data['look_description'][:97] + '...'
            else:
                look.look_short_desc = form.data['look_description']
            look.look_photo_path = filename
            look.look_photo_upload_IP_addr = get_client_ip(request)
            look.look_photo.save(filename, resizedfile)
            look.save()
            #upload file
            fd = open(filename, 'wb')
            for chunk in resizedfile.chunks():
                fd.write(chunk)
            fd.close()
            #detect img color
            colors = ImageProcessing.best_matched_colors(filename)
            for c in colors:
                color = LookColor()
                color.belong_to_look = look
                color.color_category = color_dict[c]
                color.red = 0
                color.green = 0
                color.blue = 0
                color.hue = 0
                color.save()
            
            #(red, green, blue) = average_image_color(filename)
            #color = LookColor()
            #color.belong_to_look = look
            #color.red = red
            #color.green = green
            #color.blue = blue
            #color.hue = hue
            #color.color_category = 'b' #choice(LookColor.COLOR_LIST)[0]
            #color.save()
            return HttpResponseRedirect(reverse('Look_v3_1.look.views.detail', args=(look.id,)))
        else:
            return render_to_response('looks/upload.html',
                                      {'form': form},
                                      context_instance=RequestContext(request))
コード例 #3
0
    def forward(self, predicted_img_batch, target_img_batch, gradient_regulariser):
        """Forward function for the CURL loss

        :param predicted_img_batch_high_res: 
        :param predicted_img_batch_high_res_rgb: 
        :param target_img_batch: Tensor of shape BxCxWxH
        :returns: value of loss function
        :rtype: float

        """
        num_images = target_img_batch.shape[0]
        target_img_batch = target_img_batch

        ssim_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        l1_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        cosine_rgb_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        sat_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        hue_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        value_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        a_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        b_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        hsv_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        deep_isp_loss = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))
        rgb_loss_value = Variable(
            torch.cuda.FloatTensor(torch.zeros(1, 1).cuda()))

        for i in range(0, num_images):

            target_img = target_img_batch[i, :, :, :].permute(2, 0, 1).cuda()
            predicted_img = predicted_img_batch[i, :, :, :].cuda()

            predicted_img_lab = torch.clamp(
                ImageProcessing.rgb_to_lab(predicted_img.squeeze(0)), 0, 1)
            target_img_lab = torch.clamp(
                ImageProcessing.rgb_to_lab(target_img.squeeze(0)), 0, 1)

            target_img_hsv = torch.clamp(ImageProcessing.rgb_to_hsv(
                target_img.squeeze(0)), 0, 1)
            predicted_img_hsv = torch.clamp(ImageProcessing.rgb_to_hsv(
                predicted_img.squeeze(0)), 0, 1)

            predicted_img_hue = (predicted_img_hsv[0, :, :]*2*math.pi)
            predicted_img_val = predicted_img_hsv[2, :, :]
            predicted_img_sat = predicted_img_hsv[1, :, :]
            target_img_hue = (target_img_hsv[0, :, :]*2*math.pi)
            target_img_val = target_img_hsv[2, :, :]
            target_img_sat = target_img_hsv[1, :, :]

            target_img_L_ssim = target_img_lab[0, :, :].unsqueeze(0)
            predicted_img_L_ssim = predicted_img_lab[0, :, :].unsqueeze(0)
            target_img_L_ssim = target_img_L_ssim.unsqueeze(0)
            predicted_img_L_ssim = predicted_img_L_ssim.unsqueeze(0)

            ssim_value = self.compute_msssim(
                predicted_img_L_ssim, target_img_L_ssim)

            ssim_loss_value += (1.0 - ssim_value)
            predicted_img_1 = predicted_img_val * \
                predicted_img_sat*torch.cos(predicted_img_hue)
            predicted_img_2 = predicted_img_val * \
                predicted_img_sat*torch.sin(predicted_img_hue)
            target_img_1 = target_img_val * \
                target_img_sat*torch.cos(target_img_hue)
            target_img_2 = target_img_val * \
                target_img_sat*torch.sin(target_img_hue)

            p = torch.stack(
                (predicted_img_1, predicted_img_2, predicted_img_val), 2)
            d = torch.stack((target_img_1, target_img_2, target_img_val), 2)

            l1_loss_value += F.l1_loss(predicted_img_lab, target_img_lab)
            rgb_loss_value += F.l1_loss(predicted_img, target_img)
            hsv_loss_value += F.l1_loss(p, d)

            cosine_rgb_loss_value += (1-torch.mean(
                torch.nn.functional.cosine_similarity(predicted_img, target_img, dim=0)))

        l1_loss_value = l1_loss_value/num_images
        rgb_loss_value_hsv = rgb_loss_value/num_images
        ssim_loss_value = ssim_loss_value/num_images
        cosine_rgb_loss_value = cosine_rgb_loss_value/num_images
        hsv_loss_value = hsv_loss_value/num_images

        '''
        Note the hyperparameters 1e-3, 1e-6 below work well for SamsungS7. They
        may need changed for other datasets.
        '''
        curl_loss = (rgb_loss_value + cosine_rgb_loss_value + l1_loss_value +
                     hsv_loss_value + 1e-3*ssim_loss_value + 1e-6*gradient_regulariser)/6

        return curl_loss
コード例 #4
0
    def forward(self, x):
        """Forward function for the CURL layer

        :param x: forward the data x through the network 
        :returns: Tensor representing the predicted image
        :rtype: Tensor

        """

        '''
        This function is where the magic happens :)
        '''
        x.contiguous()  # remove memory holes

        feat = x[:, 3:64, :, :]
        img = x[:, 0:3, :, :]

        torch.cuda.empty_cache()
        shape = x.shape

        img_clamped = torch.clamp(img, 0, 1)
        img_lab = torch.clamp(ImageProcessing.rgb_to_lab(
            img_clamped.squeeze(0)), 0, 1)

        feat_lab = torch.cat((feat, img_lab.unsqueeze(0)), 1)

        x = self.lab_layer1(feat_lab)
        del feat_lab
        x = self.lab_layer2(x)
        x = self.lab_layer3(x)
        x = self.lab_layer4(x)
        x = self.lab_layer5(x)
        x = self.lab_layer6(x)
        x = self.lab_layer7(x)
        x = self.lab_layer8(x)
        x = x.view(x.size()[0], -1)
        x = self.dropout1(x)
        L = self.fc_lab(x)

        img_lab, gradient_regulariser_lab = ImageProcessing.adjust_lab(
            img_lab.squeeze(0), L[0, 0:48])
        img_rgb = ImageProcessing.lab_to_rgb(img_lab.squeeze(0))
        img_rgb = torch.clamp(img_rgb, 0, 1)

        feat_rgb = torch.cat((feat, img_rgb.unsqueeze(0)), 1)

        x = self.rgb_layer1(feat_rgb)
        x = self.rgb_layer2(x)
        x = self.rgb_layer3(x)
        x = self.rgb_layer4(x)
        x = self.rgb_layer5(x)
        x = self.rgb_layer6(x)
        x = self.rgb_layer7(x)
        x = self.rgb_layer8(x)
        x = x.view(x.size()[0], -1)
        x = self.dropout2(x)
        R = self.fc_rgb(x)

        img_rgb, gradient_regulariser_rgb = ImageProcessing.adjust_rgb(
            img_rgb.squeeze(0), R[0, 0:48])
        img_rgb = torch.clamp(img_rgb, 0, 1)

        img_hsv = ImageProcessing.rgb_to_hsv(img_rgb.squeeze(0))
        img_hsv = torch.clamp(img_hsv, 0, 1)
        feat_hsv = torch.cat((feat, img_hsv.unsqueeze(0)), 1)

        x = self.hsv_layer1(feat_hsv)
        del feat_hsv
        x = self.hsv_layer2(x)
        x = self.hsv_layer3(x)
        x = self.hsv_layer4(x)
        x = self.hsv_layer5(x)
        x = self.hsv_layer6(x)
        x = self.hsv_layer7(x)
        x = self.hsv_layer8(x)
        x = x.view(x.size()[0], -1)
        x = self.dropout3(x)
        H = self.fc_hsv(x)

        img_hsv, gradient_regulariser_hsv = ImageProcessing.adjust_hsv(
            img_hsv, H[0, 0:64])
        img_hsv = torch.clamp(img_hsv, 0, 1)

        img_residual = torch.clamp(ImageProcessing.hsv_to_rgb(
           img_hsv.squeeze(0)), 0, 1)

        img = torch.clamp(img + img_residual.unsqueeze(0), 0, 1)

        gradient_regulariser = gradient_regulariser_rgb + \
            gradient_regulariser_lab+gradient_regulariser_hsv

        return img, gradient_regulariser
コード例 #5
0
    def evaluate(self, net, epoch=0):
        """Evaluates a network on a specified split of a dataset e.g. test, validation

        :param net: PyTorch neural network data structure
        :param data_loader: an instance of the DataLoader class for the dataset of interest
        :param split_name: name of the split e.g. "test", "validation"
        :param log_dirpath: logging directory
        :returns: average loss, average PSNR
        :rtype: float, float

        """

        psnr_avg = 0.0
        ssim_avg = 0.0
        examples = 0
        running_loss = 0
        num_batches = 0
        batch_size = 1

        out_dirpath = self.log_dirpath + "/" + self.split_name.lower()
        if not os.path.isdir(out_dirpath):
            os.mkdir(out_dirpath)

        # switch model to evaluation mode
        net.eval()
        net.cuda()

        for batch_num, data in enumerate(self.data_loader, 0):

            input_img_batch, output_img_batch, name = Variable(data['input_img'], requires_grad=False,
                                                               volatile=True).cuda(), Variable(data['output_img'],
                                                                                               requires_grad=False,
                                                                                               volatile=True).cuda(), \
                data['name']
            input_img_batch = input_img_batch.unsqueeze(0)

            for i in range(0, input_img_batch.shape[0]):

                img = input_img_batch[i, :, :, :]
                img = torch.clamp(img, 0, 1)

                net_output_img_example = net(img)

                loss = self.criterion(net_output_img_example[:, 0:3, :, :],
                                      output_img_batch[:, 0:3, :, :])

                input_img_example = (
                    input_img_batch.cpu().data[0, 0:3, :, :].numpy() *
                    255).astype('uint8')

                output_img_batch_numpy = output_img_batch.squeeze(
                    0).data.cpu().numpy()
                output_img_batch_numpy = ImageProcessing.swapimdims_3HW_HW3(
                    output_img_batch_numpy)
                output_img_batch_rgb = output_img_batch_numpy
                output_img_batch_rgb = ImageProcessing.swapimdims_HW3_3HW(
                    output_img_batch_rgb)
                output_img_batch_rgb = np.expand_dims(output_img_batch_rgb,
                                                      axis=0)

                net_output_img_example_numpy = net_output_img_example.squeeze(
                    0).data.cpu().numpy()
                net_output_img_example_numpy = ImageProcessing.swapimdims_3HW_HW3(
                    net_output_img_example_numpy)
                net_output_img_example_rgb = net_output_img_example_numpy
                net_output_img_example_rgb = ImageProcessing.swapimdims_HW3_3HW(
                    net_output_img_example_rgb)
                net_output_img_example_rgb = np.expand_dims(
                    net_output_img_example_rgb, axis=0)
                net_output_img_example_rgb = np.clip(
                    net_output_img_example_rgb, 0, 1)

                running_loss += loss.data[0]
                examples += batch_size
                num_batches += 1

                psnr_example = ImageProcessing.compute_psnr(
                    output_img_batch_rgb.astype(np.float32),
                    net_output_img_example_rgb.astype(np.float32), 1.0)
                ssim_example = ImageProcessing.compute_ssim(
                    output_img_batch_rgb.astype(np.float32),
                    net_output_img_example_rgb.astype(np.float32))

                psnr_avg += psnr_example
                ssim_avg += ssim_example

                if batch_num > 30:
                    '''
                    We save only the first 30 images down for time saving
                    purposes
                    '''
                    continue
                else:

                    output_img_example = (output_img_batch_rgb[0, 0:3, :, :] *
                                          255).astype('uint8')
                    net_output_img_example = (
                        net_output_img_example_rgb[0, 0:3, :, :] *
                        255).astype('uint8')

                    plt.imsave(
                        out_dirpath + "/" + name[0].split(".")[0] + "_" +
                        self.split_name.upper() + "_" + str(epoch + 1) + "_" +
                        str(examples) + "_PSNR_" +
                        str("{0:.3f}".format(psnr_example)) + "_SSIM_" +
                        str("{0:.3f}".format(ssim_example)) + ".jpg",
                        ImageProcessing.swapimdims_3HW_HW3(
                            net_output_img_example))

                del net_output_img_example_numpy
                del net_output_img_example_rgb
                del output_img_batch_rgb
                del output_img_batch_numpy
                del input_img_example
                del output_img_batch

        psnr_avg = psnr_avg / num_batches
        ssim_avg = ssim_avg / num_batches

        logging.info('loss_%s: %.5f psnr_%s: %.3f ssim_%s: %.3f' %
                     (self.split_name, (running_loss / examples),
                      self.split_name, psnr_avg, self.split_name, ssim_avg))

        loss = (running_loss / examples)

        return loss, psnr_avg, ssim_avg