コード例 #1
0
ファイル: simplify.py プロジェクト: gazzola/simpatico_ss
    def __init__(self, doc):
        """
        Perform syntactic simplification rules.
        @param doc: document to be simplified.
        """
        self.sentences = open(doc, "r").read().strip().split("\n")

        ## markers are separated by their most used sense
        self.time = ['when', 'after', 'since', 'before', 'once']
        self.concession = ['although', 'though', 'but', 'however', 'whereas']
        self.justify = ['because', 'so', 'while']
        self.condition = ['if']
        self.condition2 = ['or']
        self.addition = ['and']

        ## list of all markers for analysis purposes
        self.cc = self.time + self.concession + self.justify + self.condition + self.addition + self.condition2

        ## list of relative pronouns
        self.relpron = ['whom', 'whose', 'which', 'who']

        ## initiates parser server
        self.parser = Parser()

        ## Generation class instance
        self.generation = Generation(self.time, self.concession, self.justify,
                                     self.condition, self.condition2,
                                     self.addition, self.cc, self.relpron)
コード例 #2
0
ファイル: app.py プロジェクト: mritzing/db-prototyping
def upload():
    file = request.files['inputFile']
    addForm = additionalInfoForm(request.form)
    p = Parser()
    item = p.parseFile(file.read(), file)
    return (render_template('uploadForm.html',
                            form=addForm,
                            fileName=file,
                            smilesStr=item[0],
                            massStr=item[1],
                            filename=getattr(file, 'filename', None)))
コード例 #3
0
ファイル: resume.py プロジェクト: jharjono/yaml2latex_resume
def translate(source_file, template_file):
    """
    Translate source_file (a YAML resume) to a LaTeX resume following template_file
    """
    parser = Parser()
    data = parser.read(source_file)
    
    contact = Contact(data.get('contact'))
    sections = [Section(section, data.get(section)) for section in data.get('order')]
    
    formatter = LaTeXFormatter()
    return formatter.format(template_file, contact, sections)
コード例 #4
0
ファイル: csv_extractor.py プロジェクト: NMWDI/WDIExtractors
    def process_message(self, connector, host, secret_key, resource,
                        parameters):
        logger = logging.getLogger(__name__)
        logger.debug('resource {}'.format(resource))
        logger.debug('parameters {}'.format(parameters))

        inputfile = resource["local_paths"][0]
        file_id = resource['id']
        datasetid = parameters['datasetId']

        extracted = False
        with Parser() as p:
            for fp in p.items(inputfile):
                # add yaml file
                fid = files.upload_to_dataset(connector,
                                              host,
                                              secret_key,
                                              datasetid,
                                              fp,
                                              check_duplicate=True)
                tags = {'tags': ['YNeeded']}
                files.upload_tags(connector, host, secret_key, fid, tags)
                os.remove(fp)
                extracted = True

        if extracted:
            # set tags
            tags = {'tags': ['CSVExtracted']}
            files.upload_tags(connector, host, secret_key, file_id, tags)
コード例 #5
0
ファイル: simplify.py プロジェクト: gazzola/simpatico_ss
    def __init__(self, doc):
        """
        Perform syntactic simplification rules for Galician (this code is based on the one available at simpatico_ss/simplify.py for English).
        TODO: Relative and conjoint clauses are not supported by the Galician parser. Functions for these cases were left here as examples for feature implementations.
        @param doc: document to be simplified.
        """
        self.sentences = open(doc, "r").read().strip().split("\n")

        ## markers are separated by their most used sense
        self.time = ['when', 'after', 'since', 'before', 'once']
        self.concession = ['although', 'though', 'but', 'however', 'whereas']
        self.justify = ['because', 'so', 'while']
        self.condition = ['if']
        self.condition2 = ['or']
        self.addition = ['and']

        ## list of all markers for analysis purposes
        self.cc = self.time + self.concession + self.justify + self.condition + self.addition + self.condition2

        ## list of relative pronouns
        self.relpron = ['whom', 'whose', 'which', 'who']

        ## initiates parser server
        self.parser = Parser()

        ## Generation class instance
        self.generation = Generation(self.time, self.concession, self.justify,
                                     self.condition, self.condition2,
                                     self.addition, self.cc, self.relpron)
コード例 #6
0
def main():
    """Runs the CLI."""
    try:
        topics_path = os.environ["TOPICS_PATH"]
    except KeyError:
        print("E: TOPICS_PATH environment variable not set")
        sys.exit(2)

    topics = TopicList(topics_path)

    args = Parser(topics, __doc__, __version__)
    status = args.cmd(topics=args.enabled,
                      name=args.name,
                      dir=args.dir,
                      args=args.raw).run()

    sys.exit(status)
コード例 #7
0
ファイル: gw.py プロジェクト: TheMetaNetProject/metanetdev
def process_file(f):
    class Handler(object):
        def __init__(self):
            self.status = None
        def start_element(self, name, attrs):
            if name in ('p', 'P'): self.status = P
        def end_element(self, name):
            if name in ('p', 'P'): self.status = None
        def char_data(self, data):
            #pprint(data)
            if self.status == P: 
                if good(data):
                    sentences.append(''.join(map(lambda x: ' ' if x == '\n' else x, data)) + '\n')
                
    sentences = []
    parser = Parser(Handler())
    parser.ParseFile(f)
    
    return sentences
コード例 #8
0
ファイル: TSPProblem.py プロジェクト: lsqLoveCoding/ecga-tsp
 def __init__(self, filename, alg):
     """
     build up city coordinates.
     :param filename: tsp file name
     """
     self.filename = filename
     self.city_list = []
     self.alg = alg
     __raw_data = Parser.parse(filename)
     # self.citylist  = <x_coordinate, y_coordinate, city_index>
     for item in __raw_data['map']:
         self.city_list.append((item[1], item[2], item[0]))
コード例 #9
0
ファイル: Well.py プロジェクト: bas-rustenburg/robots
 def __init__(self, *initial_data, **kwargs):
     
     self.is_source = False
     
     for dictionary in initial_data:
         for key in dictionary:
             setattr(self, key, dictionary[key])
     for key in kwargs:
         setattr(self, key, kwargs[key])        
         
     if not hasattr(self, 'position'):
         self.position = [1,1]
         
     self.position = ps._interprete_well(self.position)
     
     if hasattr(self, 'plate'):
         self.plate.replaceWell(self)
コード例 #10
0
ファイル: app.py プロジェクト: mritzing/db-prototyping
def search_results(search):
    print("hit search")
    results = []
    search_string = search.data['search']
    if search.data['search'] == '':
        p = Parser()
        results = p.returnAllRes()
        print(results)
        return redirect('/')
    if not results:
        print("not found")
        flash('No results found!')
        return redirect('/')
    else:
        # display results
        p = Parser()
        results = p.returnAllRes()
        print(results)
        return redirect('/')
コード例 #11
0
def return_parser():
    """
    Defines and returns argparse ArgumentParser object.

    :return: ArgumentParser
    """
    parser = Parser("Simple token based rnn for language modeling from glove vectors.")
    parser.add_argument('-inputdir', type=str, default='input_data/numpy/')
    parser.add_argument('-learnrate', type=float, default=0.00272473811408,
                        help='Step size for gradient descent.')
    parser.add_argument("-lm_layers", nargs='+', type=int, default=[128],
                        help="A list of hidden layer sizes.")
    parser.add_argument('-mb', type=int, default=16,
                        help='The mini batch size for stochastic gradient descent.')
    parser.add_argument('-debug', action='store_true',
                        help='Use this flag to print feed dictionary contents and dimensions.')
    parser.add_argument('-maxbadcount', type=str, default=10,
                        help='Threshold for early stopping.')
    parser.add_argument('-random_seed', type=int, default=5,
                        help='Random seed for reproducible experiments.')
    parser.add_argument('-verbose', type=int, default=1, help='Whether to print loss during training.')
    parser.add_argument('-decay', action='store_true',
                        help='whether to use learnrate decay')
    parser.add_argument('-decay_rate', type=float,
                        help='rate to decay step size')
    parser.add_argument('-decay_steps', type=int,
                        help='how many steps to perform learnrate decay')
    parser.add_argument('-random', action='store_true',
                        help='Whether to initialize embedding vectors to random values')
    parser.add_argument('-fixed', action='store_true')
    parser.add_argument('-epochs', type=float, default=3,
                        help='Maximum epochs to train on. Need not be in whole epochs.')
    parser.add_argument('-outfile', type=str, default='test_make_lstm_classifier.txt')
    parser.add_argument('-l2', type=float, default=0.0)
    parser.add_argument('-partition', type=str, default='both',
                        help='Can be "both", "desc", or "title"')
    parser.add_argument('-modelsave', type=str, default='saved_model/',
                        help='Directory to save trained model in.')
    # 16 0.00272473811408 128 0 0 0.245176650126 0.94024 0.905526 0.983861 0.943069

    return parser
コード例 #12
0
 def __init__(self, input_path, output_path):
     self.parser = Parser()
     self.output = []
     self.input_path = input_path
     self.output_path = output_path
コード例 #13
0
ファイル: simplify.py プロジェクト: gazzola/simpatico_ss
class Simplify():
    def __init__(self, doc):
        """
        Perform syntactic simplification rules.
        @param doc: document to be simplified.
        """
        self.sentences = open(doc, "r").read().strip().split("\n")

        ## markers are separated by their most used sense
        self.time = ['when', 'after', 'since', 'before', 'once']
        self.concession = ['although', 'though', 'but', 'however', 'whereas']
        self.justify = ['because', 'so', 'while']
        self.condition = ['if']
        self.condition2 = ['or']
        self.addition = ['and']

        ## list of all markers for analysis purposes
        self.cc = self.time + self.concession + self.justify + self.condition + self.addition + self.condition2

        ## list of relative pronouns
        self.relpron = ['whom', 'whose', 'which', 'who']

        ## initiates parser server
        self.parser = Parser()

        ## Generation class instance
        self.generation = Generation(self.time, self.concession, self.justify,
                                     self.condition, self.condition2,
                                     self.addition, self.cc, self.relpron)

    def transformation(self, sent, ant, justify=False):
        """
        Transformation step in the simplification process.
        This is a recursive method that receives two parameters:
        @param sent: sentence to be simplified.
        @param ant: previous sentence. If sent = ant, then no simplification should be performed.
        @param justify: controls cases where sentence order is inverted and should invert the entire recursion.
        @return: the simplified sentences.
        """
        def remove_all(aux, item):
            """
            Remove all incidences of a node in a graph (needed for graphs with cycles).
            @param aux: auxiliary of parse structure
            @param item: node to be removed
            """
            for a in aux.keys():
                for d in aux[a].keys():
                    if item in aux[a][d]:
                        aux[a][d].remove(item)

        def recover_punct(final, s):
            """
            Recover the punctuation of the sentence (needed because the dependency parser does not keep punctuation.
            @param final: the final dictionary with the words in order
            @param s: the tokenised sentence with the punctuation marks
            @return the final dictionary with the punctuation marks
            """

            char_list = "``\'\'"
            ant = 0
            for k in sorted(final.keys()):
                if int(k) - ant == 2:
                    if s[k - 2] in string.punctuation + char_list:
                        final[k - 1] = s[k - 2]
                    elif s[k - 2] == "-RRB-":
                        final[k - 1] = ")"
                    elif s[k - 2] == "-LRB-":
                        final[k - 1] = "("
                if int(k) - ant == 3:
                    if s[k - 2] in string.punctuation + char_list and s[
                            k - 3] in string.punctuation + char_list:
                        final[k - 1] = s[k - 2]
                        final[k - 2] = s[k - 3]
                ant = k
            return final

        def build(root, dep, aux, words, final, yes_root=True, previous=None):
            """
            Creates a dictionary with the words of a simplified clause, following the sentence order.
            This is a recursive method that navigates through the dependency tree.
            @param root: the root node in the dependency tree
            @param dep: the dependencies of the root node
            @param aux: the auxiliary parser output
            @param words: auxiliary parsed words
            @param final: dictionary with the positions and words
            @param yes_root: flag to define whether or not the root node should be included
            @param previous: list of nodes visited
            """

            ## controls recursion
            if previous == None:
                previous = []

            if root in previous:
                return

            previous.append(root)

            ## for cases where the rule does not include the root node
            if yes_root:
                final[root] = words[root - 1][0]
                previous.append(root)

            for k in dep.keys():
                for i in dep[k]:
                    if i in aux.keys():

                        deps = aux[i]

                        ## needed for breaking loops -- solved by the recursion condition
                        #for d in deps.keys():
                        #    if i in deps[d]:
                        #        deps[d].remove(i)

                        build(i, deps, aux, words, final, previous=previous)

                    final[i] = words[i - 1][0]

        def conjoint_clauses(aux, words, root, deps_root, ant, _type, rel):
            """
            Simplify conjoint clauses
            @param aux: auxiliary parser output
            @param words: auxiliary words and POS tags structure
            @param root: root node in the dependency tree
            @param deps_root: dependencies of the root node
            @param ant: previous sentence (for recursion purposes)
            @param _type: list of markers found in the sentence that can indicate conjoint clauses
            @param rel: parser relation between the main and the dependent clause (can be 'advcl' or 'conj')
            @return: a flag that indicates whether or not the sentence was simplified and the result sentence (if flag = False, ant is returned)
            """

            ## split the clauses
            others = deps_root[rel]
            pos = 0
            s1 = s2 = ""
            v_tense = ""
            for o in others:
                flag = True
                if o not in aux:
                    flag = False
                    continue
                deps_other = aux[o]

                ## check the marker position ('when' is advmod, while others are mark)
                if 'advcl' in rel:
                    if 'mark' in deps_other.keys():
                        mark = deps_other['mark'][0]
                        mark_name = words[mark - 1][0].lower()
                    elif 'advmod' in deps_other.keys():
                        mark = deps_other['advmod'][0]
                        mark_name = words[mark - 1][0].lower()
                    else:
                        flag = False  #needed for broken cases
                        continue
                else:
                    if 'cc' in deps_root.keys() and 'conj' in rel:
                        conj = deps_root[rel][0]
                        if 'VB' in words[conj - 1][1][
                                'PartOfSpeech'] and 'VB' in words[root - 1][1][
                                    'PartOfSpeech']:  #needed for broken cases like 'Care and support you won't have to pay towards'
                            mark = deps_root['cc'][0]
                            mark_name = words[mark - 1][0].lower()
                        else:
                            flag = False
                            continue
                    else:
                        flag = False
                        continue

                ## hack for simpatico use cases
                if mark_name == "and" and words[mark - 2][0].lower(
                ) == "care" and words[mark][0].lower() == "support":
                    flag = False
                    continue

                ## dealing with cases without subject
                if 'nsubj' not in deps_other and 'nsubj' in deps_root:
                    deps_other['nsubj'] = deps_root['nsubj']
                elif 'nsubj' not in deps_other and 'nsubjpass' in deps_root:
                    deps_other['nsubj'] = deps_root['nsubjpass']
                elif 'nsubj' not in deps_other and 'nsubj' not in deps_root:
                    flag = False
                    continue

                ## check if the marker is in the list of selected markers
                if mark_name in _type:

                    ## check if verbs have objects
                    tag_list = ('advcl', 'xcomp', 'acomp', 'amod', 'appos',
                                'cc', 'ccomp', 'dep', 'dobj', 'iobj', 'nwe',
                                'pcomp', 'pobj', 'prepc', 'rcmod', 'ucomp',
                                'nmod', 'auxpass', 'advmod', 'prep')

                    #if not any([t in tag_list  for t in deps_root.keys()]):
                    #return False, ant
                    #    flag = False
                    #    continue
                    #elif not any([t in tag_list  for t in deps_other.keys()]):
                    #return False, ant
                    #    flag = False
                    #    continue
                    #if (len(deps_root) < 2 or len(deps_other) < 2):
                    #   return False, ant

                    ## delete marker and relation from the graph
                    if 'advcl' in rel:
                        if 'mark' in deps_other.keys():
                            del deps_other['mark'][0]
                        elif 'advmod' in deps_other.keys():
                            del deps_other['advmod'][0]
                    else:
                        del deps_root['cc'][0]

                    #del deps_root[rel][pos]
                    #pos+=1
                    deps_root[rel].remove(o)

                    ## for cases with time markers -- This + modal + happen
                    modal = None
                    if 'aux' in deps_root and mark_name in self.time:
                        modal_pos = deps_root['aux'][0]
                        modal = words[modal_pos - 1][0]

                    ## for cases either..or with the modal verb attached to the main clause
                    if 'aux' in deps_root and mark_name in self.condition2:
                        deps_other['aux'] = deps_root[u'aux']

                    ## built the sentence again
                    final_root = {}
                    build(root, deps_root, aux, words, final_root)
                    final_deps = {}
                    build(o, deps_other, aux, words, final_deps)

                    ## TODO: remove this part from here --> move to another module: self.generation
                    root_tag = words[root - 1][1]['PartOfSpeech']
                    justify = True
                    #if ((root > o) and (mark_name in self.time and mark>1)) or (mark_name == 'because' and mark > 1):
                    if (root > o) or (mark_name == 'because' and mark > 1):
                        if (mark_name in self.time and mark == 1):
                            sentence1, sentence2 = self.generation.print_sentence(
                                final_root, final_deps, root_tag, mark_name,
                                mark, modal)
                        else:
                            sentence1, sentence2 = self.generation.print_sentence(
                                final_deps, final_root, root_tag, mark_name,
                                mark, modal)
                    else:
                        sentence1, sentence2 = self.generation.print_sentence(
                            final_root, final_deps, root_tag, mark_name, mark,
                            modal)

                    s1 = self.transformation(sentence1, ant, justify)
                    s2 = self.transformation(sentence2, ant)

                    flag = True
                else:
                    flag = False
                    continue

            if flag:
                return flag, s1 + " " + s2
            else:
                return flag, ant

        def relative_clauses(aux, words, root, deps_root, ant, rel):
            """
            Simplify relative clauses
            @param aux: auxiliary parser output
            @param words: auxiliary words and POS tags structure
            @param root: root node in the dependency tree
            @param deps_root: dependencies of the root node
            @param ant: previous sentence (for recursion purposes)
            @param rel: parser relation between the main and the dependent clause (can be 'nsubj' or 'dobj')
            @return: a flag that indicates whether or not the sentence was simplified and the result sentence (if flag = False, ant is returned)
            """
            subj = deps_root[rel][0]
            if subj not in aux.keys():
                return False, ant
            deps_subj = aux[subj]
            if 'acl:relcl' in deps_subj.keys() or 'rcmod' in deps_subj.keys():
                if 'acl:relcl' in deps_subj.keys():
                    relc = deps_subj['acl:relcl'][0]
                    type_rc = 'acl:relcl'
                else:
                    relc = deps_subj['rcmod'][0]
                    type_rc = 'rcmod'
                deps_relc = aux[relc]

                if 'nsubj' in deps_relc.keys():
                    subj_rel = 'nsubj'
                elif 'nsubjpass' in deps_relc.keys():
                    subj_rel = 'nsubjpass'

                if 'ref' in deps_subj:
                    to_remove = deps_subj['ref'][0]
                    mark = words[deps_subj['ref'][0] - 1][0].lower()
                else:
                    to_remove = deps_relc[subj_rel][0]
                    mark = words[deps_relc[subj_rel][0] - 1][0].lower()

                if mark in self.relpron:
                    deps_relc[subj_rel][0] = subj
                    remove_all(aux, to_remove)
                elif 'dobj' in deps_relc:  ## needed for cases where the subject of the relative clause is the object
                    obj = deps_relc['dobj'][0]
                    if 'poss' in aux[obj]:
                        mod = aux[obj]['poss'][0]
                        aux_words = list(words[mod - 1])
                        aux_words[0] = words[subj - 1][0] + '\'s'
                        words[mod - 1] = tuple(aux_words)
                        aux[mod] = aux[subj]
                    else:
                        return False, ant
                else:
                    return False, ant  #for borken cases - " There are some situations where it is particularly important that you get financial information and advice that is independent of us."

                del aux[subj][type_rc]

                if 'punct' in deps_subj.keys():
                    del aux[subj]['punct']

                final_root = {}
                build(root, deps_root, aux, words, final_root)
                final_relc = {}
                build(relc, deps_relc, aux, words, final_relc)

                if justify:
                    sentence2, sentence1 = self.generation.print_sentence(
                        final_root, final_relc)
                else:
                    sentence1, sentence2 = self.generation.print_sentence(
                        final_root, final_relc)

                s1 = self.transformation(sentence1, ant, justify)
                s2 = self.transformation(sentence2, ant)
                return True, s1 + " " + s2
            else:
                return False, ant

        def appositive_phrases(aux, words, root, deps_root, ant):
            """
            Simplify appositive phrases
            @param aux: auxiliary parser output
            @param words: auxiliary words and POS tags structure
            @param root: root node in the dependency tree
            @param deps_root: dependencies of the root node
            @param ant: previous sentence (for recursion purposes)
            @return: a flag that indicates whether or not the sentence was simplified and the result sentence (if flag = False, ant is returned)
            """

            ## apposition needs to have a subject -- same subject of the mais sentence.
            if 'nsubj' in deps_root.keys():

                subj = deps_root['nsubj'][0]
                subj_word = words[subj - 1][0]

                if subj not in aux:
                    return False, ant

                deps_subj = aux[subj]
                v_tense = words[root - 1][1]['PartOfSpeech']
                n_num = words[subj - 1][1]['PartOfSpeech']
                if 'amod' in deps_subj:  ## bug -- this generates several mistakes...
                    mod = deps_subj['amod'][0]
                    if mod in aux:
                        deps_mod = aux[mod]
                    else:
                        deps_mod = {}
                    del aux[subj]['amod']
                    deps_subj = aux[subj]

                    ## Treat simple cases such as 'general rule'
                    #if 'JJ' in words[mod-1][1]['PartOfSpeech'] and len(deps_mod.keys()) == 0:
                    if 'JJ' in words[
                            mod -
                            1][1]['PartOfSpeech'] and 'punct' not in deps_subj:
                        return False, ant

                elif 'appos' in deps_subj:
                    mod = deps_subj['appos'][0]
                    if mod in aux:
                        deps_mod = aux[mod]
                    else:
                        deps_mod = {}
                    del aux[subj]['appos']
                    deps_subj = aux[subj]
                else:
                    return False, ant

                if 'punct' in deps_subj.keys():
                    del deps_subj['punct']

                final_root = {}
                build(root, deps_root, aux, words, final_root)
                final_appos = {}
                build(mod, deps_mod, aux, words, final_appos)
                final_subj = {}
                build(subj, deps_subj, aux, words, final_subj)

                if len(final_appos.keys()) < 2:
                    return False, ant

                sentence1, sentence2 = self.generation.print_sentence_appos(
                    final_root, final_appos, final_subj, v_tense, n_num,
                    subj_word)
                s1 = self.transformation(sentence1, ant)
                s2 = self.transformation(sentence2, ant)
                return True, s1 + " " + s2
            else:
                return False, ant

        def passive_voice(aux, words, root, deps_root, ant):
            """
            Simplify sentence from passive to active voice.
            @param aux: auxiliary parser output
            @param words: auxiliary words and POS tags structure
            @param root: root node in the dependency tree
            @param deps_root: dependencies of the root node
            @param ant: previous sentence (for recursion purposes)
            @return: a flag that indicates whether or not the sentence was simplified and the result sentence (if flag = False, ant is returned)
            """

            if 'auxpass' in deps_root.keys():

                if 'nmod:agent' in deps_root.keys():

                    if 'nsubjpass' not in deps_root:
                        return False, ant

                    subj = deps_root['nsubjpass'][0]
                    if subj in aux:
                        deps_subj = aux[subj]
                    else:
                        deps_subj = {}

                    aux_tense = words[deps_root['auxpass'][0] -
                                      1][1]['PartOfSpeech']
                    v_aux = None

                    if aux_tense == 'VB' and 'aux' in deps_root.keys():
                        aux_tense = words[deps_root['aux'][0] -
                                          1][1]['PartOfSpeech']
                        v_aux = words[deps_root['aux'][0] - 1][0]
                        del deps_root['aux']
                    elif aux_tense == 'VBG' and 'aux' in deps_root.keys():
                        #aux_tense = aux.get_by_address(deps_root[u'aux'][0])[u'tag']
                        v_aux = words[deps_root['aux'][0] - 1][0]
                        del deps_root['aux']
                    elif aux_tense == 'VBN' and 'aux' in deps_root.keys():
                        #v_aux = words[deps_root['aux'][0]-1][1]['PartOfSpeech']
                        v_aux = words[deps_root['aux'][0] - 1][0]
                        if v_aux.lower() in ("has", "have"):
                            v_aux = words[deps_root['aux'][0] - 1][0]
                        else:
                            aux_tense = 'MD'
                        del deps_root['aux']

                    del deps_root['auxpass']
                    del deps_root['nsubjpass']

                    if len(deps_root['nmod:agent']) > 1:
                        mod = deps_root['nmod:agent'][1]
                        mod2 = deps_root['nmod:agent'][0]
                        deps_mod = aux[mod]
                        deps_mod2 = aux[mod2]
                        if 'case' in deps_mod:
                            if words[deps_mod[u'case'][0] -
                                     1][0].lower() != 'by':
                                return False, ant
                            del deps_mod['case']
                            del deps_root['nmod:agent']
                            subj_tag = words[mod - 1][1]['PartOfSpeech']
                            subj_word = words[mod - 1][0]
                            final_subj = {}
                            build(mod, deps_mod, aux, words, final_subj)

                            final_obj = {}
                            build(subj, deps_subj, aux, words, final_obj)

                            final_mod2 = {}
                            build(mod2, deps_mod2, aux, words, final_mod2)

                            final_root = {}
                            build(root, deps_root, aux, words, final_root,
                                  False)

                            sentence1 = self.generation.print_sentence_voice(
                                final_subj, final_obj, words[root - 1][0],
                                v_aux, aux_tense, subj_tag, subj_word,
                                final_mod2, final_root)
                            s1 = self.transformation(sentence1, ant)
                            return True, s1
                        elif 'case' in deps_mod2:
                            if words[deps_mod2['case'][0] -
                                     1][0].lower() != 'by':
                                return False, ant
                            del deps_mod2['case']
                            del deps_root['nmod:agent']
                            subj_tag = words[mod2 - 1][1]['PartOfSpeech']
                            subj_word = words[mod2 - 1][0]

                            final_subj = {}
                            build(mod2, deps_mod2, aux, words, final_subj)

                            final_obj = {}
                            build(subj, deps_subj, aux, words, final_obj)

                            final_mod2 = {}
                            build(mod, deps_mod, aux, words, final_mod2)

                            final_root = {}
                            build(root, deps_root, aux, words, final_root,
                                  False)

                            sentence1 = self.generation.print_sentence_voice(
                                final_subj, final_obj, words[root - 1][0],
                                v_aux, aux_tense, subj_tag, subj_word,
                                final_mod2, final_root)
                            s1 = self.transformation(sentence1, ant)
                            return True, s1
                        else:
                            return False, ant

                    else:
                        mod = deps_root['nmod:agent'][0]

                        deps_mod = aux[mod]

                        if 'case' in deps_mod:
                            if words[deps_mod['case'][0] -
                                     1][0].lower() != 'by':
                                return False, ant

                            del deps_mod['case']
                            del deps_root['nmod:agent']

                            subj_tag = words[mod - 1][1]['PartOfSpeech']
                            subj_word = words[mod - 1][0]

                            final_subj = {}
                            build(mod, deps_mod, aux, words, final_subj)

                            final_obj = {}
                            build(subj, deps_subj, aux, words, final_obj)

                            final_root = {}
                            build(root, deps_root, aux, words, final_root,
                                  False)

                            sentence1 = self.generation.print_sentence_voice(
                                final_subj, final_obj, words[root - 1][0],
                                v_aux, aux_tense, subj_tag, subj_word,
                                final_root)
                            s1 = self.transformation(sentence1, ant)
                            return True, s1
                        else:
                            return False, ant
                else:
                    return False, ant
            else:
                return False, ant

        ## MAIN OF TRANSFORMATION

        ## control recursion: check whether there is no simplification to be done
        if sent == ant:
            return sent

        flag = False

        ant = sent

        ## parser
        try:
            parsed = self.parser.process(sent)

        except AssertionError:
            return ant

        ## data structure for the words and POS
        words = parsed['words']

        ## data structure for the dependency parser
        dict_dep = self.parser.transform(parsed)

        ## check whether or not the sentence has a root node
        if 0 not in dict_dep:
            return ant

        root = dict_dep[0]['root'][0]

        ## check for root dependencies
        if root not in dict_dep:
            return ant

        deps_root = dict_dep[root]

        ## get tokens
        sent_tok = []
        for w in words:
            sent_tok.append(w[0])

        ## dealing with questions
        ## TODO: improve this control with parser information.
        if sent_tok[0].lower() in ("what", "where", "when", "whose", "who",
                                   "which", "whom", "whatever", "whatsoever",
                                   "whichever", "whoever", "whosoever",
                                   "whomever", "whomsoever", "whoseever",
                                   "whereever") and sent_tok[-1] == "?":
            return ant

        ## deal with apposition
        flag, simpl = appositive_phrases(dict_dep, words, root, deps_root, ant)
        if flag:
            return simpl

        ## analyse whether or not a sentence has simplification clues (in this case, discourse markers or relative pronouns)
        a = Analysis(sent_tok, self.cc, self.relpron)

        flag_cc, type_cc = a.analyse_cc()

        ## if sentence has a marker that requires attention
        if flag_cc:
            ## sorting according to the order of the relations
            rel = {}
            for k in deps_root.keys():
                if 'conj' in k or 'advcl' in k:
                    others = sorted(deps_root[k], reverse=True)
                    cnt = 0
                    for o in others:
                        deps_root[k + str(cnt)] = []
                        deps_root[k + str(cnt)].append(o)
                        rel[k + str(cnt)] = deps_root[k][0]
                        cnt += 1
                    del deps_root[k]

            sorted_rel = sorted(rel.items(), key=operator.itemgetter(1))
            for k in sorted_rel:

                flag, simpl = conjoint_clauses(dict_dep, words, root,
                                               deps_root, ant, type_cc, k[0])
                if flag:
                    return simpl

        flag_rc, type_rc = a.analyse_rc()

        ## if sentence has a relative pronoun
        if flag_rc:

            ## check where is the dependency of the relative clause
            if 'nsubj' in deps_root:
                flag, simpl = relative_clauses(dict_dep, words, root,
                                               deps_root, ant, 'nsubj')
                if flag:
                    return simpl
            elif 'dobj' in deps_root:
                flag, simpl = relative_clauses(dict_dep, words, root,
                                               deps_root, ant, 'dobj')
                if flag:
                    return simpl

        ## deal with passive voice
        flag, simpl = passive_voice(dict_dep, words, root, deps_root, ant)
        if flag:
            return simpl

        ## return the original sentence if no simplification was done
        if flag == False:
            return ant

    def simplify(self):
        """
        Call the simplification process for all sentences in the document.
        """
        #c = 0
        simp_sentences = []
        for s in self.sentences:

            #print "Original: " + s

            simp_sentences.append(self.transformation(s, ''))

            ## for demonstration purposes only. remove the prints later
            #print "Simplified: ",
            #print simp_sentences[c]
            #c+=1

            #print
        return simp_sentences
コード例 #14
0
        check=True,
    )

    # reattach audio to the newly generated video
    subprocess.run(
        "ffmpeg -i {} -i {} -map 0:0 -map 1:0 -vcodec copy -acodec copy -y {}".format(
            os.path.join(mount_dir, video_name, video_without_audio),
            os.path.join(mount_dir, video_name, "audio.aac"),
            os.path.join(mount_dir, video_name, video_with_audio),
        ),
        shell=True,
        check=True,
    )

    # remove temp video without audio
    os.remove(os.path.join(mount_dir, video_name, video_without_audio))


if __name__ == "__main__":
    parser = Parser()
    parser.append_postprocess_args()
    args = parser.return_args()

    assert args.video_name is not None
    assert args.storage_mount_dir is not None

    postprocess(
        mount_dir=args.storage_mount_dir,
        video_name=args.video_name
    )
        if i > 0:
            if queue_limit:
                condition = i % batch_size == 0 or i == queue_limit - 1
            else:
                condition = i % batch_size == 0 or i == file_count - 1

            if condition:
                bus_service.send_queue_message_batch(queue, msg_batch)
                msg_batch = []

    return file_count


if __name__ == "__main__":

    parser = Parser()
    parser.append_add_images_to_queue_args()
    args = parser.return_args()

    assert args.namespace is not None
    assert args.queue is not None
    assert args.sb_key_name is not None
    assert args.sb_key_value is not None
    assert args.storage_mount_dir is not None
    assert args.video_name is not None

    # setup logger
    handler_format = get_handler_format()
    console_handler = logging.StreamHandler(sys.stdout)
    console_handler.setFormatter(handler_format)
    logger = logging.getLogger("root")
コード例 #16
0
ファイル: Test.py プロジェクト: Besufikad17/ChemistryTool
from util import Parser as parser

print(parser.calculate_molar_mass(parser.get_elements('CaCl2'),'CaCl2'))


コード例 #17
0
        directory.

    2.  Merge previously recorded bags from the specified directory.

By default, all the topics defined in your project's 'topics' file will be
recorded/merged if no arguments are specified. Otherwise, only the topics
specified will be recorded/merged.
"""

import os
import sys
from util import Parser, TopicList

__author__ = "Anass Al-Wohoush"
__version__ = "1.2.0"

if __name__ == "__main__":
    try:
        topics_path = os.environ["TOPICS_PATH"]
    except KeyError:
        print("E: TOPICS_PATH environment variable not set")
        sys.exit(2)

    topics = TopicList(topics_path)

    args = Parser(topics, __doc__, __version__)
    status = args.cmd(
        topics=args.enabled, name=args.name, dir=args.dir, args=args.raw).run()

    sys.exit(status)