コード例 #1
0
def main(_):
    global DT_CLIENT
    DT_CLIENT = domain_translation_client.DomainTranslationClient(
        FLAGS.domain_translation_server,
        FLAGS.image_hw,
        # sample_images_path='/home/jerryli27/PycharmProjects/image2tag/data/inference_test_data/images_sample.npy',
        concurrency=FLAGS.concurrency)
    if FLAGS.labeler_source_image_path:
        LABELER_CLIENT.set_image_paths(
            FLAGS.labeler_source_image_path,
            os.path.join(FLAGS.labeler_output_image_path,
                         'finished_images.txt'), FLAGS.labeler_sketch_folder)
    else:
        tf.logging.warning(
            'labeler client not set! empty flag `labeler_source_image_path`.')

    global SKETCH_REFINEMENT_CLIENT
    if FLAGS.sketch_refinement_supervised_server:
        SKETCH_REFINEMENT_CLIENT = sketch_refinement_client.SketchRefinementClient(
            FLAGS.sketch_refinement_supervised_server,
            FLAGS.image_hw,
            concurrency=FLAGS.concurrency,
            supervised=True)
        # SKETCH_REFINEMENT_CLIENT_UNSUPERVISED = sketch_refinement_client.SketchRefinementClient(
        #   FLAGS.sketch_refinement_unsupervised_server, FLAGS.image_hw, concurrency=FLAGS.concurrency, supervised=False
        # )

    if FLAGS.labeler_sketch_refinement_folder:
        util_io.touch_folder(FLAGS.labeler_sketch_refinement_folder)

    print 'GPU: {}'.format(FLAGS.gpu)
    httpd = BaseHTTPServer.HTTPServer((FLAGS.host, FLAGS.port), MyHandler)
    print 'serving at', FLAGS.host, ':', FLAGS.port
    httpd.serve_forever()
コード例 #2
0
 def set_image_paths(self,
                     image_path,
                     finished_image_txt_path,
                     sketch_folder,
                     exclude_file_start={'e', 'q'}):
     if image_path:
         self.image_paths = util_io.get_all_image_paths(image_path)
         # Danbooru specific method to filter out nsfw images.
         self.image_paths = [
             p for p in self.image_paths
             if os.path.basename(p)[0] not in exclude_file_start
         ]
         self.sketch_paths = [None for _ in range(len(self.image_paths))]
         self.index = 0
     if finished_image_txt_path:
         self.done_image_txt_path = finished_image_txt_path
         dir = os.path.dirname(finished_image_txt_path)
         self.colored_sketch_pair_txt_path = os.path.join(
             dir, 'colored_sketch_pair.txt')
         util_io.touch_folder(dir)
         try:
             self.done_image_paths = set(
                 util_io.get_all_image_paths(finished_image_txt_path))
         except AssertionError:
             pass
     self.sketch_folder = sketch_folder
     sketches = set([
         util_misc.get_no_ext_base(p)
         for p in util_io.get_all_image_paths(sketch_folder)
     ])
     self.image_paths = [
         p for p in self.image_paths
         if util_misc.get_no_ext_base(p) in sketches
     ]
     pass
コード例 #3
0
 def _get_shared_info(self):
   """Wrapper around _read_shared_info() and _generate_shared_info()."""
   # If shared info already exists, read it instead of generating it again.
   if os.path.isfile(FLAGS.shared_info_output):
     return self._read_shared_info(FLAGS.shared_info_output)
   else:
     shared_info_output_dir = os.path.split(FLAGS.shared_info_output)[0]
     if not os.path.exists(shared_info_output_dir):
       util_io.touch_folder(shared_info_output_dir)
     return self._generate_shared_info(FLAGS.train_directory, FLAGS.validation_directory, FLAGS.shared_info_output)
コード例 #4
0
  def main(self, ):
    assert not FLAGS.train_shards % FLAGS.num_threads, (
      'Please make the FLAGS.num_threads commensurate with FLAGS.train_shards')
    assert not FLAGS.validation_shards % FLAGS.num_threads, (
      'Please make the FLAGS.num_threads commensurate with '
      'FLAGS.validation_shards')
    print('Saving results to %s' % FLAGS.output_directory)

    util_io.touch_folder(FLAGS.output_directory)

    # Run it!
    self._process_dataset('validation', None, FLAGS.validation_shards, '2')
    self._process_dataset('test', None, FLAGS.validation_shards, '1')
    self._process_dataset('train', None, FLAGS.train_shards, '0')
コード例 #5
0
def main(_):
  print("""Another way to test the inference model: 
        saved_model_cli run --dir 'path/to/export/model' \
        --tag_set serve  --signature_def serving_default --input_exprs 'inputs=np.ones((1,4,4,3))'""")
  if not FLAGS.twingan_server:
    print('please specify twingan_server host:port')
    return
  util_io.touch_folder(FLAGS.output_dir)
  img_basename = os.path.basename(FLAGS.image_path)

  client = TwinGANClient(FLAGS.twingan_server, FLAGS.image_hw, concurrency=FLAGS.concurrency)
  output_dir = os.path.join(FLAGS.output_dir, img_basename)
  client.do_inference(image_path=FLAGS.image_path, output_dir=output_dir)
  client.block_on_callback(output_dir)
  print('\nDone')
コード例 #6
0
  def main(self, ):
    tf.logging.set_verbosity(tf.logging.INFO)
    assert not FLAGS.train_shards % FLAGS.num_threads, (
      'Please make the FLAGS.num_threads mod FLAGS.train_shards == 0')
    assert not FLAGS.validation_shards % FLAGS.num_threads, (
      'Please make the FLAGS.num_threads mod FLAGS.validation_shards == 0')
    print('Saving results to %s' % FLAGS.output_directory)

    util_io.touch_folder(FLAGS.output_directory)
    shared_info = self._get_shared_info()

    if FLAGS.validation_directory:
      self._process_dataset('validation', FLAGS.validation_directory, FLAGS.validation_shards, shared_info, )
    if FLAGS.train_directory:
      self._process_dataset('train', FLAGS.train_directory, FLAGS.train_shards, shared_info, )
コード例 #7
0
def main(_):
  print("""Another way to test the inference model: 
        saved_model_cli run --dir 'path/to/export/model' \
        --tag_set serve  --signature_def serving_default --input_exprs 'inputs=np.ones((1,4,4,3))'""")
  if FLAGS.num_tests > 10000:
    print('num_tests should not be greater than 10k')
    return
  if not FLAGS.domain_translation_server:
    print('please specify domain_translation_server host:port')
    return
  util_io.touch_folder(FLAGS.output_dir)
  img_basename = os.path.basename(FLAGS.image_path)

  # client = DomainTranslationClient(FLAGS.domain_translation_server, FLAGS.image_hw, concurrency=FLAGS.concurrency, sample_images_path='/home/jerryli27/PycharmProjects/image2tag/data/inference_test_data/images_sample.npy')
  client = DomainTranslationClient(FLAGS.domain_translation_server, FLAGS.image_hw, concurrency=FLAGS.concurrency, sample_images_path='')
  client.do_inference(FLAGS.image_path, os.path.join(FLAGS.output_dir, img_basename))
  print('\nDone')
コード例 #8
0
def main(_):
    print("""Another way to test the inference model: 
        saved_model_cli run --dir 'path/to/export/model' \
        --tag_set serve  --signature_def serving_default --input_exprs 'inputs=np.ones((1,4,4,3))'"""
          )
    util_io.touch_folder(FLAGS.output_dir)
    img_basename = os.path.basename(FLAGS.image_path)

    # client = DomainTranslationClient(FLAGS.domain_translation_server, FLAGS.image_hw, concurrency=FLAGS.concurrency, sample_images_path='/home/jerryli27/PycharmProjects/image2tag/data/inference_test_data/images_sample.npy')
    client = SketchRefinementClient(FLAGS.sketch_refinement_server,
                                    FLAGS.image_hw,
                                    concurrency=FLAGS.concurrency)
    output_dir = os.path.join(FLAGS.output_dir, img_basename)
    client.do_inference(output_dir,
                        center_point_xy=[14, 14],
                        image_path=FLAGS.image_path,
                        sketch_image_path=FLAGS.image_path)
    client.block_on_callback(output_dir)
    print('\nDone')
コード例 #9
0
def main(_):
    inferer = ImageInferer()
    if FLAGS.input_image_path:
        outputs, image_paths = inferer.infer(
            FLAGS.input_image_path, return_image_paths=True)
    else:
        print('Generating images conditioned on random vector.')
        assert FLAGS.num_output >= 0, 'you have to specify the `num_output` flag for non-translational generators.'
        outputs, image_paths = inferer.infer(
            FLAGS.input_image_path, return_image_paths=True, num_output=FLAGS.num_output)

    if isinstance(outputs, list):
        util_io.touch_folder(FLAGS.output_image_path)
        for i, output in enumerate(outputs):
            util_io.imsave(os.path.join(FLAGS.output_image_path,
                                        os.path.basename(image_paths[i])), output)
    else:
        util_io.touch_folder(os.path.dirname(FLAGS.output_image_path))
        util_io.imsave(FLAGS.output_image_path, outputs)
コード例 #10
0
  def save_images(fetches, image_dir):
    """Given a list of `OutputTensor`s, save the images to `image_dir`."""
    if not os.path.isdir(image_dir):
      util_io.touch_folder(image_dir)
    filesets = []
    now = str(int(time.time() * 1000))

    for name, is_image, vals in fetches:
      if is_image:
        image_names = []
        filesets.append((name, is_image, image_names))
        for i, val in enumerate(vals):
          filename = name + '_' + now + '_' + str(i) + '.jpg'
          image_names.append(filename)
          out_path = os.path.join(image_dir, filename)
          with open(out_path, 'w') as f:
            f.write(val)
      else:
        filesets.append((name, is_image, vals))

    return filesets
コード例 #11
0
ファイル: face.py プロジェクト: aaronchen98/ReyeR
def face2face(input_image_path='/root/CSC4001/data/test_face'):
    output_image_path = '/root/CSC4001/results/face/' + input_image_path.split(
        '/')[-1].split('.')[0] + '.jpg'
    inferer = ImageInferer()
    if input_image_path:
        outputs, image_paths = inferer.infer(input_image_path,
                                             return_image_paths=True)
    else:
        print('Generating images conditioned on random vector.')
        assert num_output >= 0, 'you have to specify the `num_output` flag for non-translational generators.'
        outputs, image_paths = inferer.infer(input_image_path,
                                             return_image_paths=True,
                                             num_output=num_output)

    if isinstance(outputs, list):
        util_io.touch_folder(output_image_path)
        for i, output in enumerate(outputs):
            util_io.imsave(
                os.path.join(output_image_path,
                             os.path.basename(image_paths[i])), output)
    else:
        util_io.touch_folder(os.path.dirname(output_image_path))
        util_io.imsave(output_image_path, outputs)
    return output_image_path
コード例 #12
0
  def main(self):
    tf.logging.set_verbosity(tf.logging.INFO)
    # Set session_config to allow some operations to be run on cpu.
    session_config = tf.ConfigProto(allow_soft_placement=True, )

    with tf.Graph().as_default():
      ######################
      # Select the dataset #
      ######################
      dataset = self._select_dataset()

      ######################
      # Select the network #
      ######################
      networks = self._select_network()

      #####################################
      # Select the preprocessing function #
      #####################################
      image_preprocessing_fn = self._select_image_preprocessing_fn()

      #######################
      # Config model_deploy #
      #######################
      deploy_config = model_deploy.DeploymentConfig(
        num_clones=FLAGS.num_clones,
        clone_on_cpu=FLAGS.clone_on_cpu,
        replica_id=FLAGS.task,
        num_replicas=FLAGS.worker_replicas,
        num_ps_tasks=FLAGS.num_ps_tasks)

      global_step = slim.create_global_step()

      ##############################################################
      # Create a dataset provider that loads data from the dataset #
      ##############################################################
      data = self._prepare_data(dataset, image_preprocessing_fn, deploy_config, )
      data_batched = self._get_batch(data)
      batch_names = data_batched.keys()
      batch = data_batched.values()

      ###############
      # Is Training #
      ###############
      if FLAGS.is_training:
        if not os.path.isdir(FLAGS.train_dir):
          util_io.touch_folder(FLAGS.train_dir)
        if not os.path.exists(os.path.join(FLAGS.train_dir, FLAGS_FILE_NAME)):
          FLAGS.append_flags_into_file(os.path.join(FLAGS.train_dir, FLAGS_FILE_NAME))

        try:
          batch_queue = slim.prefetch_queue.prefetch_queue(
            batch, capacity=4 * deploy_config.num_clones)
        except ValueError as e:
          tf.logging.warning('Cannot use batch_queue due to error %s', e)
          batch_queue = batch
        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        clones = model_deploy.create_clones(deploy_config, self._clone_fn,
                                            GeneralModel._dtype_string_to_dtype(FLAGS.variable_dtype),
                                            [networks, batch_queue, batch_names],
                                            {'global_step': global_step,
                                             'is_training': FLAGS.is_training})
        first_clone_scope = deploy_config.clone_scope(0)

        # Add summaries for end_points.
        end_points = clones[0].outputs
        self._end_points_for_debugging = end_points
        self._add_end_point_summaries(end_points, summaries)
        # Add summaries for images, if there are any.
        self._add_image_summaries(end_points, summaries)
        # Add summaries for losses.
        self._add_loss_summaries(first_clone_scope, summaries, end_points)
        # Add summaries for variables.
        for variable in slim.get_model_variables():
          summaries.add(tf.summary.histogram(variable.op.name, variable))

        #################################
        # Configure the moving averages #
        #################################
        if FLAGS.moving_average_decay:
          moving_average_variables = slim.get_model_variables()
          variable_averages = tf.train.ExponentialMovingAverage(
            FLAGS.moving_average_decay, global_step)
        else:
          moving_average_variables, variable_averages = None, None

        #########################################
        # Configure the optimization procedure. #
        #########################################
        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by generator_network_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

        with tf.device(deploy_config.optimizer_device()):
          learning_rate = self._configure_learning_rate(self.num_samples, global_step)
          optimizer = self._configure_optimizer(learning_rate)

        if FLAGS.sync_replicas:
          # If sync_replicas is enabled, the averaging will be done in the chief
          # queue runner.
          optimizer = tf.train.SyncReplicasOptimizer(
            opt=optimizer,
            replicas_to_aggregate=FLAGS.replicas_to_aggregate,
            total_num_replicas=FLAGS.worker_replicas,
            variable_averages=variable_averages,
            variables_to_average=moving_average_variables)
        elif FLAGS.moving_average_decay:
          # Update ops executed locally by trainer.
          update_ops.append(variable_averages.apply(moving_average_variables))

        summaries.add(tf.summary.scalar('learning_rate', learning_rate))
        # Define optimization process.
        train_tensor = self._add_optimization(clones, optimizer, summaries, update_ops, global_step)

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                           first_clone_scope))

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # Define train_step with eval every `eval_every_n_steps`.
        def train_step_fn(session, *args, **kwargs):
          self.do_extra_train_step(session, end_points, global_step)
          total_loss, should_stop = slim.learning.train_step(session, *args, **kwargs)
          return [total_loss, should_stop]

        ###########################
        # Kicks off the training. #
        ###########################
        slim.learning.train(
          train_tensor,
          train_step_fn=train_step_fn,
          logdir=FLAGS.train_dir,
          master=FLAGS.master,
          is_chief=(FLAGS.task == 0),
          init_fn=self._get_init_fn(FLAGS.checkpoint_path, FLAGS.checkpoint_exclude_scopes),
          summary_op=summary_op,
          number_of_steps=FLAGS.max_number_of_steps,
          log_every_n_steps=FLAGS.log_every_n_steps,
          save_summaries_secs=FLAGS.save_summaries_secs,
          save_interval_secs=FLAGS.save_interval_secs,
          sync_optimizer=optimizer if FLAGS.sync_replicas else None,
          session_config=session_config)
      ##########################
      # Eval, Export or Output #
      ##########################
      else:
        # Write flags file.
        if not os.path.isdir(FLAGS.eval_dir):
          util_io.touch_folder(FLAGS.eval_dir)
        if not os.path.exists(os.path.join(FLAGS.eval_dir, FLAGS_FILE_NAME)):
          FLAGS.append_flags_into_file(os.path.join(FLAGS.eval_dir, FLAGS_FILE_NAME))

        with tf.variable_scope(tf.get_variable_scope(),
                               custom_getter=model_deploy.get_custom_getter(
                                 GeneralModel._dtype_string_to_dtype(FLAGS.variable_dtype)),
                               reuse=False):
          end_points = self._clone_fn(networks, batch_queue=None, batch_names=batch_names, data_batched=data_batched,
                                      is_training=False, global_step=global_step)

        num_batches = int(math.ceil(self.num_samples / float(FLAGS.batch_size)))

        checkpoint_path = util_misc.get_latest_checkpoint_path(FLAGS.checkpoint_path)

        if FLAGS.moving_average_decay:
          variable_averages = tf.train.ExponentialMovingAverage(
            FLAGS.moving_average_decay, global_step)
          variables_to_restore = variable_averages.variables_to_restore(
            slim.get_model_variables())
          variables_to_restore[global_step.op.name] = global_step
        else:
          variables_to_restore = slim.get_variables_to_restore()

        saver = None
        if variables_to_restore is not None:
          saver = tf.train.Saver(variables_to_restore)

        session_creator = tf.train.ChiefSessionCreator(
          scaffold=tf.train.Scaffold(saver=saver),
          checkpoint_filename_with_path=checkpoint_path,
          master=FLAGS.master,
          config=session_config)

        ##########
        # Output #
        ##########
        if FLAGS.do_output:
          tf.logging.info('Output mode.')
          output_ops = self._maybe_encode_output_tensor(self._define_outputs(end_points, data_batched))
          start_time = time.time()
          with tf.train.MonitoredSession(
              session_creator=session_creator) as session:
            for i in range(num_batches):
              output_results = session.run([item[-1] for item in output_ops])
              self._write_outputs(output_results, output_ops)
              if i % FLAGS.log_every_n_steps == 0:
                current_time = time.time()
                speed = (current_time - start_time) / (i + 1)
                time_left = speed * (num_batches - i + 1)
                tf.logging.info('%d / %d done. Time left: %f', i + 1, num_batches, time_left)


        ################
        # Export Model #
        ################
        elif FLAGS.do_export:
          tf.logging.info('Exporting trained model to %s', FLAGS.export_path)
          with tf.Session(config=session_config) as session:
            saver.restore(session, checkpoint_path)
            builder = tf.saved_model.builder.SavedModelBuilder(FLAGS.export_path)
            signature_def_map = self._build_signature_def_map(end_points, data_batched)
            assets_collection = self._build_assets_collection(end_points, data_batched)
            legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
            builder.add_meta_graph_and_variables(
              session, [tf.saved_model.tag_constants.SERVING],
              signature_def_map=signature_def_map,
              legacy_init_op=legacy_init_op,
              assets_collection=assets_collection,
            )
          builder.save()
          tf.logging.info('Done exporting!')

        ########
        # Eval #
        ########
        else:
          tf.logging.info('Eval mode.')
          # Add summaries for images, if there are any.
          self._add_image_summaries(end_points, None)

          # Define the metrics:
          metric_map = self._define_eval_metrics(end_points, data_batched)

          names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(metric_map)
          names_to_values = collections.OrderedDict(**names_to_values)
          names_to_updates = collections.OrderedDict(**names_to_updates)

          # Print the summaries to screen.
          for name, value in names_to_values.items():
            summary_name = 'eval/%s' % name
            if len(value.shape):
              op = tf.summary.tensor_summary(summary_name, value, collections=[])
            else:
              op = tf.summary.scalar(summary_name, value, collections=[])
            op = tf.Print(op, [value], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

          if not (FLAGS.do_eval_debug or FLAGS.do_custom_eval):
            tf.logging.info('Evaluating %s' % checkpoint_path)

            slim.evaluation.evaluate_once(
              master=FLAGS.master,
              checkpoint_path=checkpoint_path,
              logdir=FLAGS.eval_dir,
              num_evals=num_batches,
              eval_op=list(names_to_updates.values()),
              variables_to_restore=variables_to_restore,
              session_config=session_config)
            return

          ################################
          # `do_eval_debug` flag is true.#
          ################################
          if FLAGS.do_eval_debug:
            eval_ops = list(names_to_updates.values())
            eval_names = list(names_to_updates.keys())

            # Items to write to a html page.
            encode_ops = self._maybe_encode_output_tensor(self.get_items_to_encode(end_points, data_batched))

            with tf.train.MonitoredSession(session_creator=session_creator) as session:
              if eval_ops is not None:
                for i in range(num_batches):
                  eval_result = session.run(eval_ops, None)
                  print('; '.join(('%s:%s' % (name, str(eval_result[i])) for i, name in enumerate(eval_names))))

              # Write to HTML
              if encode_ops:
                for i in range(num_batches):
                  encode_ops_feed_dict = self._get_encode_op_feed_dict(end_points, encode_ops, i)
                  encoded_items = session.run([item[-1] for item in encode_ops], encode_ops_feed_dict)
                  encoded_list = []
                  for j in range(len(encoded_items)):
                    encoded_list.append((encode_ops[j][0], encode_ops[j][1], encoded_items[j].tolist()))

                  eval_items = self.save_images(encoded_list, os.path.join(FLAGS.eval_dir, 'images'))
                  eval_items = self.to_human_friendly(eval_items, )
                  self._write_eval_html(eval_items)
                  if i % 10 == 0:
                    tf.logging.info('%d/%d' % (i, num_batches))
          if FLAGS.do_custom_eval:
            extra_eval = self._define_extra_eval_actions(end_points, data_batched)
            with tf.train.MonitoredSession(session_creator=session_creator) as session:
              self._do_extra_eval_actions(session, extra_eval)