コード例 #1
0
def entity_concat(inps):
    '''
        Concat 4D tensors along the third dimension. If a 3D tensor is in the list
            then treat it as a single entity and expand the third dimension
        Args:
            inps (list of tensors): tensors to concatenate
    '''
    with tf.variable_scope('concat_entities'):
        shapes = [shape_list(_x) for _x in inps]
        # For inputs that don't have entity dimension add one.
        inps = [_x if len(_shape) == 4 else tf.expand_dims(_x, 2) for _x, _shape in zip(inps, shapes)]
        shapes = [shape_list(_x) for _x in inps]
        assert np.all([_shape[-1] == shapes[0][-1] for _shape in shapes]),\
            f"Some entities don't have the same outer or inner dimensions {shapes}"
        # Concatenate along entity dimension
        out = tf.concat(inps, -2)
    return out
コード例 #2
0
def self_attention(inp, mask, heads, n_embd, layer_norm=False, qk_w=1.0, v_w=0.01,
                   scope='', reuse=False):
    '''
        Self attention over entities.
        Notation:
            T  - Time
            NE - Number entities
        Args:
            inp (tf) -- tensor w/ shape (bs, T, NE, features)
            mask (tf) -- binary tensor with shape (bs, T, NE). For each batch x time,
                            nner matrix represents entity i's ability to see entity j
            heads (int) -- number of attention heads
            n_embd (int) -- dimension of queries, keys, and values will be n_embd / heads
            layer_norm (bool) -- normalize embedding prior to computing qkv
            qk_w, v_w (float) -- scale for gaussian init for keys/queries and values
                Std will be sqrt(scale/n_embd)
            scope (string) -- tf scope
            reuse (bool) -- tf reuse
    '''
    with tf.variable_scope(scope, reuse=reuse):
        bs, T, NE, features = shape_list(inp)
        # Put mask in format correct for logit matrix
        entity_mask = None
        if mask is not None:
            with tf.variable_scope('expand_mask'):
                assert np.all(np.array(mask.get_shape().as_list()) == np.array(inp.get_shape().as_list()[:3])),\
                    f"Mask and input should have the same first 3 dimensions. {shape_list(mask)} -- {shape_list(inp)}"
                entity_mask = mask
                mask = tf.expand_dims(mask, -2)  # (BS, T, 1, NE)

        query, key, value = qkv_embed(inp, heads, n_embd, layer_norm=layer_norm, qk_w=qk_w, v_w=v_w, reuse=reuse)
        logits = tf.matmul(query, key, name="matmul_qk_parallel")  # (bs, T, heads, NE, NE)
        logits /= np.sqrt(n_embd / heads)
        softmax = stable_masked_softmax(logits, mask)
        att_sum = tf.matmul(softmax, value, name="matmul_softmax_value")  # (bs, T, heads, NE, features)
        with tf.variable_scope('flatten_heads'):
            out = tf.transpose(att_sum, (0, 1, 3, 2, 4))  # (bs, T, n_output_entities, heads, features)
            n_output_entities = shape_list(out)[2]
            out = tf.reshape(out, (bs, T, n_output_entities, n_embd))  # (bs, T, n_output_entities, n_embd)

        return out
コード例 #3
0
def concat_entity_masks(inps, masks):
    '''
        Concats masks together. If mask is None, then it creates
            a tensor of 1's with shape (BS, T, NE).
        Args:
            inps (list of tensors): tensors that masks apply to
            masks (list of tensors): corresponding masks
    '''
    assert len(inps) == len(masks), "There should be the same number of inputs as masks"
    with tf.variable_scope('concat_masks'):
        shapes = [shape_list(_x) for _x in inps]
        new_masks = []
        for inp, mask in zip(inps, masks):
            if mask is None:
                inp_shape = shape_list(inp)
                if len(inp_shape) == 4:  # this is an entity tensor
                    new_masks.append(tf.ones(inp_shape[:3]))
                elif len(inp_shape) == 3:  # this is a pooled or main tensor. Set NE (outer dimension) to 1
                    new_masks.append(tf.ones(inp_shape[:2] + [1]))
            else:
                new_masks.append(mask)
        new_mask = tf.concat(new_masks, -1)
    return new_mask
コード例 #4
0
def circ_conv1d(inp, **conv_kwargs):
    valid_activations = {'relu': tf.nn.relu, 'tanh': tf.tanh, '': None}
    assert 'kernel_size' in conv_kwargs, f"Kernel size needs to be specified for circular convolution layer."
    conv_kwargs['activation'] = valid_activations[conv_kwargs['activation']]
    # concatenate input for circular convolution
    kernel_size = conv_kwargs['kernel_size']
    num_pad = kernel_size // 2
    inp_shape = shape_list(inp)
    inp_rs = tf.reshape(inp, shape=[inp_shape[0] * inp_shape[1]] + inp_shape[2:]) #  (BS * T, NE, feats)
    inp_padded = tf.concat([inp_rs[..., -num_pad:, :], inp_rs, inp_rs[..., :num_pad, :]], -2)
    out = tf.layers.conv1d(inp_padded,
                           kernel_initializer=tf.contrib.layers.xavier_initializer(),
                           padding='valid',
                           **conv_kwargs)
    out = tf.reshape(out, shape=inp_shape[:3] + [conv_kwargs['filters']])
    return out
コード例 #5
0
def qkv_embed(inp, heads, n_embd, layer_norm=False, qk_w=1.0, v_w=0.01, reuse=False):
    '''
        Compute queries, keys, and values
        Args:
            inp (tf) -- tensor w/ shape (bs, T, NE, features)
            heads (int) -- number of attention heads
            n_embd (int) -- dimension of queries, keys, and values will be n_embd / heads
            layer_norm (bool) -- normalize embedding prior to computing qkv
            qk_w (float) -- Initialization scale for keys and queries. Actual scale will be
                sqrt(qk_w / #input features)
            v_w (float) -- Initialization scale for values. Actual scale will be sqrt(v_w / #input features)
            reuse (bool) -- tf reuse
    '''
    with tf.variable_scope('qkv_embed'):
        bs, T, NE, features = shape_list(inp)
        if layer_norm:
            with tf.variable_scope('pre_sa_layer_norm'):
                inp = tf.contrib.layers.layer_norm(inp, begin_norm_axis=3)

        # qk shape (bs x T x NE x h x n_embd/h)
        qk_scale = np.sqrt(qk_w / features)
        qk = tf.layers.dense(inp,
                             n_embd * 2,
                             kernel_initializer=tf.random_normal_initializer(stddev=qk_scale),
                             reuse=reuse,
                             name="qk_embed")  # bs x T x n_embd*2
        qk = tf.reshape(qk, (bs, T, NE, heads, n_embd // heads, 2))

        # (bs, T, NE, heads, features)
        query, key = [tf.squeeze(x, -1) for x in tf.split(qk, 2, -1)]

        v_scale = np.sqrt(v_w / features)
        value = tf.layers.dense(inp,
                                n_embd,
                                kernel_initializer=tf.random_normal_initializer(stddev=v_scale),
                                reuse=reuse,
                                name="v_embed")  # bs x T x n_embd
        value = tf.reshape(value, (bs, T, NE, heads, n_embd // heads))

        query = tf.transpose(query, (0, 1, 3, 2, 4),
                             name="transpose_query")  # (bs, T, heads, NE, n_embd / heads)
        key = tf.transpose(key, (0, 1, 3, 4, 2),
                           name="transpose_key")  # (bs, T, heads, n_embd / heads, NE)
        value = tf.transpose(value, (0, 1, 3, 2, 4),
                             name="transpose_value")  # (bs, T, heads, NE, n_embd / heads)

    return query, key, value
コード例 #6
0
def load_variables(policy, weights):
    weights = {os.path.normpath(key): value for key, value in weights.items()}
    weights = {replace_base_scope(key, policy.scope): value for key, value in weights.items()}
    assign_ops = []
    for var in policy.get_variables():
        var_name = os.path.normpath(var.name)
        if var_name not in weights:
            logging.warning(f"{var_name} was not found in weights dict. This will be reinitialized.")
            tf.get_default_session().run(var.initializer)
        else:
            try:
                assert np.all(np.array(shape_list(var)) == np.array(weights[var_name].shape))
                assign_ops.append(var.assign(weights[var_name]))
            except Exception:
                traceback.print_exc(file=sys.stdout)
                print(f"Error assigning weights of shape {weights[var_name].shape} to {var}")
                sys.exit()
    tf.get_default_session().run(assign_ops)
コード例 #7
0
    def _init_policy_out(self, pi, taken_actions):
        with tf.variable_scope('policy_out', reuse=self.reuse):
            self.pdparams = {}
            for k in self.pdtypes.keys():
                with tf.variable_scope(k, reuse=self.reuse):
                    if self.gaussian_fixed_var and isinstance(
                            self.ac_space.spaces[k], gym.spaces.Box):
                        mean = tf.layers.dense(
                            pi["main"],
                            self.pdtypes[k].param_shape()[0] // 2,
                            kernel_initializer=normc_initializer(0.01),
                            activation=None)
                        logstd = tf.get_variable(
                            name="logstd",
                            shape=[1, self.pdtypes[k].param_shape()[0] // 2],
                            initializer=tf.zeros_initializer())
                        self.pdparams[k] = tf.concat(
                            [mean, mean * 0.0 + logstd], axis=2)
                    elif k in pi:
                        # This is just for the case of entity specific actions
                        if isinstance(self.ac_space.spaces[k],
                                      (gym.spaces.Discrete)):
                            assert pi[k].get_shape()[-1] == 1
                            self.pdparams[k] = pi[k][..., 0]
                        elif isinstance(self.ac_space.spaces[k],
                                        (gym.spaces.MultiDiscrete)):
                            assert np.prod(pi[k].get_shape()[-2:]) == self.pdtypes[k].param_shape()[0],\
                                f"policy had shape {pi[k].get_shape()} for action {k}, but required {self.pdtypes[k].param_shape()}"
                            new_shape = shape_list(pi[k])[:-2] + [
                                np.prod(pi[k].get_shape()[-2:]).value
                            ]
                            self.pdparams[k] = tf.reshape(pi[k],
                                                          shape=new_shape)
                        else:
                            assert False
                    else:
                        self.pdparams[k] = tf.layers.dense(
                            pi["main"],
                            self.pdtypes[k].param_shape()[0],
                            kernel_initializer=normc_initializer(0.01),
                            activation=None)

            with tf.variable_scope('pds', reuse=self.reuse):
                self.pds = {
                    k: pdtype.pdfromflat(self.pdparams[k])
                    for k, pdtype in self.pdtypes.items()
                }

            with tf.variable_scope('sampled_action', reuse=self.reuse):
                self.sampled_action = {
                    k: pd.sample() if self.stochastic else pd.mode()
                    for k, pd in self.pds.items()
                }

            with tf.variable_scope('sampled_action_neglogp', reuse=self.reuse):
                self.sampled_action_neglogp = sum([
                    self.pds[k].neglogp(self.sampled_action[k])
                    for k in self.pdtypes.keys()
                ])

            with tf.variable_scope('entropy', reuse=False):
                self.entropy = sum([pd.entropy() for pd in self.pds.values()])

            with tf.variable_scope('taken_action_neglogp', reuse=False):
                self.taken_action_neglogp = sum([
                    self.pds[k].neglogp(taken_actions[k])
                    for k in self.pdtypes.keys()
                ])