def main(output_folder_path:Path): # Set gym-carla environment agent_config = AgentConfig.parse_file(Path("configurations/agent_configuration.json")) carla_config = CarlaConfig.parse_file(Path("configurations/carla_configuration.json")) params = { "agent_config": agent_config, "carla_config": carla_config, "ego_agent_class": RLPIDAgent, "max_collision": 5 } env = gym.make('roar-pid-v0', params=params) env.reset() model_params: dict = { "verbose": 1, "render": True, "tensorboard_log": (output_folder_path / "tensorboard").as_posix() } latest_model_path = find_latest_model(output_folder_path) if latest_model_path is None: model = DDPG(LnMlpPolicy, env=env, **model_params) # full tensorboard log can take up space quickly else: model = DDPG.load(latest_model_path, env=env, **model_params) model.render = True model.tensorboard_log = (output_folder_path / "tensorboard").as_posix() logging_callback = LoggingCallback(model=model) checkpoint_callback = CheckpointCallback(save_freq=1000, verbose=2, save_path=(output_folder_path / "checkpoints").as_posix()) event_callback = EveryNTimesteps(n_steps=100, callback=checkpoint_callback) callbacks = CallbackList([checkpoint_callback, event_callback, logging_callback]) model = model.learn(total_timesteps=int(1e10), callback=callbacks, reset_num_timesteps=False) model.save(f"pid_ddpg_{datetime.now()}")
def main(output_folder_path: Path): # Set gym-carla environment agent_config = AgentConfig.parse_file( Path("configurations/agent_configuration.json")) carla_config = CarlaConfig.parse_file( Path("configurations/carla_configuration.json")) params = { "agent_config": agent_config, "carla_config": carla_config, "ego_agent_class": RLLocalPlannerAgent, "max_collision": 5, } env = gym.make('roar-local-planner-v0', params=params) env.reset() model_params: dict = { "verbose": 1, "render": True, "env": env, "n_cpu_tf_sess": None, "buffer_size": 1000, "nb_train_steps": 50, "nb_rollout_steps": 100, # "nb_eval_steps": 50, "batch_size": 32, } latest_model_path = find_latest_model(Path(output_folder_path)) if latest_model_path is None: model = DDPG(CnnPolicy, **model_params) else: model = DDPG.load(latest_model_path, **model_params) tensorboard_dir = (output_folder_path / "tensorboard") ckpt_dir = (output_folder_path / "checkpoints") tensorboard_dir.mkdir(parents=True, exist_ok=True) ckpt_dir.mkdir(parents=True, exist_ok=True) model.tensorboard_log = tensorboard_dir.as_posix() model.render = True logging_callback = LoggingCallback(model=model) checkpoint_callback = CheckpointCallback(save_freq=1000, verbose=2, save_path=ckpt_dir.as_posix()) event_callback = EveryNTimesteps(n_steps=100, callback=checkpoint_callback) callbacks = CallbackList( [checkpoint_callback, event_callback, logging_callback]) model = model.learn(total_timesteps=int(1e10), callback=callbacks, reset_num_timesteps=False) model.save(f"local_planner_ddpg_{datetime.now()}")
def main(output_folder_path: Path): # Set gym-carla environment agent_config = AgentConfig.parse_file( Path("configurations/agent_configuration.json")) carla_config = CarlaConfig.parse_file( Path("configurations/carla_configuration.json")) params = { "agent_config": agent_config, "carla_config": carla_config, "ego_agent_class": RLLocalPlannerAgent, "max_collision": 5, } env = gym.make('roar-local-planner-v1', params=params) env.reset() tensorboard_dir, ckpt_dir = prep_dir(output_folder_path) model_params: dict = { "verbose": 1, "render": True, "env": env, "n_cpu_tf_sess": 2, "buffer_size": 10, "random_exploration": 0.1, "tensorboard_log": tensorboard_dir.as_posix(), } latest_model_path = find_latest_model(Path(output_folder_path)) if latest_model_path is None: model = DDPG( LnMlpPolicy, **model_params) # full tensorboard log can take up space quickly else: model = DDPG.load(latest_model_path, **model_params) logging_callback = LoggingCallback(model=model) checkpoint_callback = CheckpointCallback(save_freq=1000, verbose=2, save_path=ckpt_dir.as_posix()) event_callback = EveryNTimesteps(n_steps=100, callback=checkpoint_callback) callbacks = CallbackList( [checkpoint_callback, event_callback, logging_callback]) model = model.learn(total_timesteps=int(1e10), callback=callbacks, reset_num_timesteps=False) model.save(f"local_planner_v1_ddpg_{datetime.now()}")
def setup(model_params, output_folder_path): latest_model_path = find_latest_model(Path(output_folder_path)) if latest_model_path is None: print("Creating model...") model = DDPG(CnnPolicy, **model_params) else: print("Loading model...") model = DDPG.load(latest_model_path, **model_params) tensorboard_dir = (output_folder_path / "tensorboard") ckpt_dir = (output_folder_path / "checkpoints") tensorboard_dir.mkdir(parents=True, exist_ok=True) ckpt_dir.mkdir(parents=True, exist_ok=True) checkpoint_callback = CheckpointCallback(save_freq=200, verbose=2, save_path=ckpt_dir.as_posix()) # event_callback = EveryNTimesteps(n_steps=100, callback=checkpoint_callback) logging_callback = LoggingCallback(model=model, verbose=1) callbacks = CallbackList([checkpoint_callback, logging_callback]) return model, callbacks