def __init__(self, n_filter, filter_size, stride=1, pad=0): self.FN = n_filter self.FH = filter_size[0] self.FW = filter_size[1] self.W = None #.astype(np.float32) self.b = None #.astype(np.float32) self.stride = stride self.pad = pad # 中間データ(backward時に使用) self.x = None self.col = None self.col_W = None # 重み・バイアスパラメータの勾配 self.dW = None self.db = None self.xp = None name = 'conv' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.params['W_' + self.name] = self.W self.params['b_' + self.name] = self.b self.grads = {} self.grads['W_' + self.name] = self.dW self.grads['b_' + self.name] = self.db
def __init__(self, W, b, stride=1, pad=0): self.W = W #.astype(np.float32) self.b = b #.astype(np.float32) self.stride = stride self.pad = pad # 中間データ(backward時に使用) self.x = None self.col = None self.col_W = None # 重み・バイアスパラメータの勾配 self.dW = None self.db = None self.xp = None name = 'conv' self.name = ut.naming(name, names) names.append(self.name) # self.params = {} # self.params['W_' + self.name] = self.W # self.params['b_' + self.name] = self.b self.grads = {} self.grads['W_' + self.name] = self.dW self.grads['b_' + self.name] = self.db
def __init__(self): self.x_shape = None name = 'Flatten' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.grads = {}
def __init__(self): self.mask = None name = 'ReLU' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.grads = {}
def __init__(self): self.y = None self.t = None name = 'Mean_squared_error' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.grads = {}
def __init__(self): self.y = None self.t = None name = 'Softmax_cross_entropy' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.grads = {}
def __init__(self, ratio=0.5): self.ratio = ratio self.mask = None self.xp = None name = 'Dropout' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.grads = {}
def __init__(self, alpha=1.0): self.mask = None self.alpha = alpha self.y = None self.xp = None name = 'ELU' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.grads = {}
def __init__(self, pool_h, pool_w, stride=1, pad=0): self.pool_h = pool_h self.pool_w = pool_w self.stride = stride self.pad = pad self.x = None self.arg_max = None self.xp = None name = 'MaxPooling' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.grads = {}
def __init__(self, variational=False): self.y = None self.t = None self.l1 = None self.l2 = None self.dl1 = None self.dl2 = None self.variational = variational name = 'Softmax_cross_entropy' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.grads = {} self.params['l1_' + self.name] = 0 # self.l1 self.params['l2_' + self.name] = 0 # self.l2 self.grads['l1_' + self.name] = 0 # self.dl1 self.grads['l2_' + self.name] = 0 # self.dl2
def __init__(self): self.eps = 1e-5 self.gamma = None self.beta = None self.dgamma = None self.dbeta = None self.xp = None name = 'bn' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.params['g_' + self.name] = self.gamma self.params['b_' + self.name] = self.beta self.grads = {} self.grads['g_' + self.name] = self.dgamma self.grads['b_' + self.name] = self.dbeta
def __init__(self, alpha=1.6732632423543772, scale=1.0507009873554805): self.mask = None self.y = None self.alpha = alpha self.scale = scale self.dalpha = None self.dscale = None self.xp = None name = 'selu' self.name = ut.naming(name, names) names.append(self.name) # self.params = {} # self.params['a_' + self.name] = self.alpha # self.params['s_' + self.name] = self.scale self.grads = {} self.grads['a_' + self.name] = self.dalpha self.grads['s_' + self.name] = self.dscale
def __init__(self, W, b): self.W = W # .astype(np.float32) self.b = b # .astype(np.float32) self.x = None self.dW = None self.db = None self.xp = None name = 'lin' self.name = ut.naming(name, names) names.append(self.name) # self.params = {} # self.params['W_' + self.name] = self.W # self.params['b_' + self.name] = self.b self.grads = {} self.grads['W_' + self.name] = self.dW self.grads['b_' + self.name] = self.db
def __init__(self, output_size): self.output_size = output_size self.W = None #.astype(np.float32) self.b = None #.astype(np.float32) self.x = None self.dW = None self.db = None self.xp = None name = 'lin' self.name = ut.naming(name, names) names.append(self.name) self.params = {} self.params['W_' + self.name] = self.W self.params['b_' + self.name] = self.b self.grads = {} self.grads['W_' + self.name] = self.dW self.grads['b_' + self.name] = self.db