def testBench(request) : grab_list = [] try : print util.parse("apphello", "3.2.1", "0") grab_list = util.parse("apphello", "3.2.1", "0") grab_list = ["foo", "bar", "baz"] except : return HttpResponse("No lines found") lineString = "" for line in grab_list : lineString = lineString + line + "<br>" #t = loader.get_template('/home/kawaii5/Stationerry/StationerryWeb/StationerryWebApp/templates/stationerry/testbench.html') return HttpResponse(lineString)
def __init__(self, f): super().__init__(f) f = parse(f) self.type = f.get("type") self.damage = int(f.get("damage"))
def __init__(self, f): super().__init__(f) f = parse(f) self.attacks = {} for i in f.get("attacks").split("\n"): att = attack(i) self.attacks[att.getName()] = att
def __init__(self, f): super().__init__(f) f = parse(f) self.protection = {} for i in f.get("protection").split("\n"): i = i.split(" ") self.protection[i[0]] = int(i[1]) self.type = f.get("type")
def __init__(self, f): f = parse(f) self.name = f.get("name") self.desc = f.get("desc") self.health = int(f.get("health")) self.weapon = weapon(f.get("weapon")) self.armor = armorSet() for i in ["helm", "chest", "legs", "boots"]: if f.get(i, -1) != -1: armor.set(armorPiece(f.get(i))) #How can drops be given to the player? It's a wierd thing for attack to handle #maps a tuple of the range to an item, eg (0,15):sword. #usage: get a random number from 0 to 100, if 0 <= x <= 15 drop = sword self.drops = {} for i in f.get("drops").split("\n"): i = i.split(" ") dropRange = i[1].split("-") self.drops[(dropRange[0], dropRange[1])] = createItem(i[0])
def createItem(f): a = {"item": item, "armorPiece": armorPiece, "weapon": weapon} b = parse(f) return a[b.get("class")](f)
def __init__(self, f): f = parse(f) protection = f.get("protection") self.name = f.get("name") self.value = f.get("value")
import collections import matplotlib.pyplot as plt import data_visualizer as dv import utilities as ut features, labels = ut.parse(data_limit=-1) test_features = ut.parse(path_feature='test_data.csv', path_labels='', data_limit=-1) #print 'featur number ' +str(len(test_features)) X_test, Y_test, X_train, Y_train = ut.divide_set(features, labels) #print len(X_test), len(Y_test), len(Y_train) #print "features \n", features[1:10] #print "labels \n", labels[1:10] """showing the distribution of classes""" """counter = collections.Counter(labels) print(counter.values()) print(counter.keys()) print(counter.most_common(3)) width = 1 / 1.5 plt.bar(counter.keys(), counter.values(), width, color="blue") plt.show()""" "" """classification""" #Y_pred = ut.do_nn(X_test, Y_test, X_train, Y_train) #print ut.check(Y_test, Y_pred) #dv.confusionMatrix(Y_test, Y_pred) """logloss classification"""
import utilities as lk from sklearn import neighbors, datasets #from sklearn.neighbors import NearestNeighbors import numpy as np import data_visualizer as dv from sklearn.metrics import accuracy_score n_neighbors = 31 h = .02 X, Y = lk.parse() X_test, Y_test, X_train, Y_train = lk.divide_set(X, Y) dv.visualizeLabels(Y) clf = neighbors.KNeighborsClassifier(n_neighbors) print 'fitting nearest neighbors' clf.fit(X_train, Y_train) print 'predicting' Y_pred = clf.predict(X_test) print(accuracy_score(Y_test, Y_pred)) dv.confusionMatrix(Y_test, Y_pred, True)