コード例 #1
0
def post(upper_base, lower_base, MFV, word_img, no_dots_copy, SR):

    last_seg = word_img[:, 0: SR[1]]
    last_seg_no_dots = no_dots_copy[:, 0:SR[1]]
    
    plt.imshow(last_seg, 'gray')
    plt.show()


    # upper_base, lower_base, MFV = baseline_detection(last_seg_no_dots)
    MTI = horizontal_transitions(no_dots_copy, upper_base)
    # MTI = upper_base-1

    VP = projection(last_seg, 'vertical')
    SRL, wrong = cut_points(last_seg, VP, MFV, MTI, upper_base)
    valid = filter_regions(last_seg, SRL, VP, upper_base, lower_base, MTI, MFV, 13)
    
    print(valid)
    l = last_seg.copy()
    V = np.dstack([l*255, l*255, l*255])
    V[MTI, :, :] = [255, 0, 0]
    plt.imshow(V, 'gray')
    plt.show()
    
    breakpoint()
コード例 #2
0
ファイル: train.py プロジェクト: Howaida12/Arabic-OCR-1
def bound_box(img_char):
    HP = projection(img_char, 'horizontal')
    VP = projection(img_char, 'vertical')

    top = -1
    down = -1
    left = -1
    right = -1

    i = 0
    while i < len(HP):
        if HP[i] != 0:
            top = i
            break
        i += 1

    i = len(HP) - 1
    while i >= 0:
        if HP[i] != 0:
            down = i
            break
        i -= 1

    i = 0
    while i < len(VP):
        if VP[i] != 0:
            left = i
            break
        i += 1

    i = len(VP) - 1
    while i >= 0:
        if VP[i] != 0:
            right = i
            break
        i -= 1

    return img_char[top:down + 1, left:right + 1]
コード例 #3
0
def baseline_detection(word_img):
    '''Get baseline index of a given word'''

    HP = projection(word_img, 'horizontal')
    peak = np.amax(HP)

    # Array of indices of max element
    baseline_idx = np.where(HP == peak)[0]

    # Get first or last index
    upper_base = baseline_idx[0]
    lower_base = baseline_idx[-1]
    thickness = abs(lower_base - upper_base) + 1
    
    return upper_base, lower_base, thickness
コード例 #4
0
def projection_segmentation(clean_img, axis, cut=3):

    segments = []
    start = -1
    cnt = 0

    projection_bins = projection(clean_img, axis)
    for idx, projection_bin in enumerate(projection_bins):

        if projection_bin != 0:
            cnt = 0
        if projection_bin != 0 and start == -1:
            start = idx
        if projection_bin == 0 and start != -1:
            cnt += 1
            if cnt >= cut:
                if axis == 'horizontal':
                    segments.append(clean_img[max(start - 1, 0):idx, :])
                elif axis == 'vertical':
                    segments.append(clean_img[:, max(start - 1, 0):idx])
                cnt = 0
                start = -1

    return segments
コード例 #5
0
def segment(line, word_img):

    # binary_word = binarize(word_img)
    binary_word = word_img//255
    no_dots_copy = remove_dots(binary_word)

    # l = binary_word.copy()

    VP_no_dots = projection(no_dots_copy, 'vertical')
    VP = projection(binary_word, 'vertical')
    binary_word = fill(binary_word, VP_no_dots)
    no_dots_copy = remove_dots(binary_word)

    # sk = skeletonize(no_dots_copy)
    upper_base, lower_base, MFV = baseline_detection(remove_dots(line))
    MTI = horizontal_transitions(no_dots_copy, upper_base)

    # if MTI == 0:
    #     plt.imshow(l, 'gray')
    #     plt.show()
        
    SRL, wrong = cut_points(binary_word, VP, MFV, MTI, upper_base)

    if wrong:
        MTI -= 1
        SRL.clear()
        SRL, wrong = cut_points(binary_word, VP, MFV, MTI, upper_base)

    HP = projection(line, 'horizontal')
    top_line = -1
    # for i, proj in enumerate(HP):
    #     if proj != 0:
    #         top_line = i
    #         break

    # print(f'MFV: {MFV}')
    # print(f'upper: {upper_base}')
    # print(f'lower: {lower_base}')
    # print(f'MTI: {MTI}')

    # plt.imshow(no_dots_copy, 'gray')
    # plt.show()

    valid = filter_regions(binary_word, no_dots_copy, SRL, VP, upper_base, lower_base, MTI, MFV, top_line)

    # post(upper_base, lower_base, MFV, binary_word, no_dots_copy ,valid[-1])

    # V = np.dstack([l*255, l*255, l*255])
    # V[MTI, :, :] = [255, 0, 0]
    # for region in valid:
    #     V[:, region[1], :] = [255, 0, 0]
    # print(SRL)
    # print(valid)

    # plt.imshow(V, 'gray')
    # plt.show()

    # breakpoint()
    chars = extract_char(binary_word, valid)

    return chars
コード例 #6
0
def filter_regions(word_img, no_dots_copy, SRL:list, VP:list, upper_base:int, lower_base:int, MTI:int, MFV:int, top_line:int):
    
    valid_separation_regions = []
    overlap = []

    T = 1
    components, labels= cv.connectedComponents(word_img[:lower_base+5, :], connectivity=8)

    SR_idx = 0
    while SR_idx < len(SRL):
        
        SR = SRL[SR_idx]
        end_idx, cut_idx, start_idx = SR

        # Case 1 : Vertical Projection = 0
        if VP[cut_idx] == 0:
            valid_separation_regions.append(SR)
            SR_idx += 1
            continue

      # Case 2 : no connected path between start and end
        # components, labels= cv.connectedComponents(word_img[:, end_idx:start_idx+1], connectivity=8)
        if labels[MTI, end_idx] != labels[MTI, start_idx]:
            valid_separation_regions.append(SR)
            overlap.append(SR)
            SR_idx += 1
            continue

      

        # Case 3 : Contain Holes
        # if check_hole(no_dots_copy[:, end_idx: cut_idx]) and inside_hole(no_dots_copy, end_idx, start_idx):
        cc, l = cv.connectedComponents(1-(no_dots_copy[:, end_idx:start_idx+1]), connectivity=4)
        
        if cc-1 >= 3 and inside_hole(no_dots_copy, end_idx, start_idx):
            SR_idx += 1
            continue
       
     
        # Case 4 : No baseline between start and end
        segment = no_dots_copy[:, end_idx+1: start_idx]
        segment_width = start_idx-end_idx-1

        j = end_idx+1
        cnt = 0
        while j < start_idx:
            
            # Black pixel (Discontinuity)
            base = upper_base-T
            while base <= lower_base+T:
                
                pixel = no_dots_copy[base][j]
                cnt += pixel

                base += 1
            
            j += 1

        if cnt < segment_width-2 and segment_width > 4:
            
            segment_HP = projection(segment, 'horizontal')

            SHPA = np.sum(segment_HP[:upper_base])
            SHPB = np.sum(segment_HP[lower_base+T+1:])

            if (int(SHPB) - int(SHPA)) >= 0:
                SR_idx += 1
                continue
            elif VP[cut_idx] <= MFV + T:
                valid_separation_regions.append(SR)
                SR_idx += 1
                continue
            else:
                SR_idx += 1
                continue

      
        # if SR_idx == 0:
        #     breakpoint()
        # Case 5 : Last region or next VP[nextcut] = 0
        if SR_idx == len(SRL) - 1 or VP[SRL[SR_idx+1][1]] == 0:

            if SR_idx == len(SRL) - 1:
                segment_dots = word_img[:, :SRL[SR_idx][1]+1]
                segment = no_dots_copy[:, :SRL[SR_idx][1]+1]
                next_cut = 0
            else:
                next_cut = SRL[SR_idx+1][1]
                segment_dots = word_img[:, next_cut:SRL[SR_idx][1]+1]
                segment = no_dots_copy[:, next_cut:SRL[SR_idx][1]+1]

            segment_HP = projection(segment, 'horizontal')
            (h, w) = segment.shape

            top = -1
            for i, proj in enumerate(segment_HP):
                if proj != 0:
                    top = i
                    break
            height = upper_base - top

            # if SR_idx == len(SRL) - 1:
                # breakpoint()
            SHPA = np.sum(segment_HP[:upper_base])
            SHPB = np.sum(segment_HP[lower_base+T+1:])
            sk = skeletonize(segment).astype(np.uint8)
            # if ((1 <= upper_base - top_left_pixel <= (upper_base-top_line)/2 and upper_base - top_left_pixel >= 0)\
            #     or (int(SHPB) - int(SHPA)) > 4 \
            #     or ((0 <= upper_base - top_left_pixel <= 2) and ((cut_idx - (dist+next_cut)) <= 5)))\
            #     and not check_hole(segment):
            #     SR_idx += 1
            #     continue
            seg_VP = projection(segment, 'vertical')
            non_zero =  np.nonzero(seg_VP)[0]
            cnt = 0
            # for k in range(0, (len(non_zero)//2)+(len(non_zero)%2)):
            for k in range(0, 3):
                if k >= len(non_zero):
                    break
                index = non_zero[k]
                if seg_VP[index] >= height:
                    cnt += 1
            
            # if SR_idx == 0:
            #     breakpoint()
            # if ((-2 <= (upper_base - top_left_pixel) < 0)\
            #     or (0 <= (upper_base - top) <= 2) and (0 <=(upper_base - top_left_pixel) <= 1)\
            #     or ((1 < (upper_base - top) <= 6) and ((upper_base - top_left_pixel) >= 0) and cnt >= 2))\
            #     and not check_hole(segment):
            #     SR_idx += 1
            #     continue
            if (SHPB <= 5 and cnt > 0 and height <= 6) or (len(non_zero) >= 10 and SHPB > SHPA and not check_dots(segment_dots)):
                SR_idx += 1
                continue
            # else:
            #     valid_separation_regions.append(SR)
            #     SR_idx += 1
            #     continue
            # else:
            #     if 0 <= upper_base - top_left_pixel <= 2 and cut_idx - (dist+next_cut) <= 5:
            #         SR_idx += 1
            #         continue
                
        # Strokes 

        SEGP = (-1, -1)
        SEG = (-1, -1)
        SEGN = (-1, -1)
        SEGNN = (-1, -1)
        SEGP_SR1 = (0, 0)
        SEGP_SR2 = (0, 0)
        SEG_SR1 = (0, 0)
        SEG_SR2 = (0, 0)
        SEGN_SR1 = (0, 0)
        SEGN_SR2 = (0, 0)
        SEGNN_SR1 = (0, 0)
        SEGNN_SR2 = (0, 0)

        current_cut = SR[1]
     
        if SR_idx == 0:
            SEGP = (SRL[SR_idx][1], word_img.shape[1]-1)
            SEGP_SR1 = (SRL[SR_idx][0], SRL[SR_idx][2])
            SEGP_SR2 = (SRL[SR_idx][1], word_img.shape[1]-1)

        if SR_idx > 0:
            SEGP = (SRL[SR_idx][1], SRL[SR_idx-1][1])
            SEGP_SR1 = (SRL[SR_idx][0], SRL[SR_idx][2])
            SEGP_SR2 = (SRL[SR_idx-1][0], SRL[SR_idx-1][2])
        
        if SR_idx < len(SRL)-1:
            SEG = (SRL[SR_idx+1][1], SRL[SR_idx][1])
            SEG_SR1 = (SRL[SR_idx][0], SRL[SR_idx][2])
            SEG_SR2 = (SRL[SR_idx+1][0], SRL[SR_idx+1][2])

        if SR_idx < len(SRL)-2:
            SEGN = (SRL[SR_idx+2][1], SRL[SR_idx+1][1])
            SEGN_SR1 = (SRL[SR_idx+1][0], SRL[SR_idx+1][2])
            SEGN_SR2 = (SRL[SR_idx+2][0], SRL[SR_idx+2][2])
        elif SR_idx == len(SRL)-2:
            SEGN = (0, SRL[SR_idx+1][1])
            SEGN_SR1 = (SRL[SR_idx+1][0], SRL[SR_idx+1][2])
            SEGN_SR2 = (0, SRL[SR_idx+1][2])

            
        if SR_idx < len(SRL)-3:
            SEGNN = (SRL[SR_idx+3][1], SRL[SR_idx+2][1])
            SEGNN_SR1 = (SRL[SR_idx+2][0], SRL[SR_idx+2][2])
            SEGNN_SR2 = (SRL[SR_idx+3][0], SRL[SR_idx+3][2])

            
        # if SR_idx == 6:
        #     breakpoint()
        
        # SEG is stroke with dots
        if SEG[0] != -1 and\
            (check_stroke(no_dots_copy, no_dots_copy[:, SEG[0]:SEG[1]], upper_base, lower_base, SEG_SR1, SEG_SR2) \
            and check_dots(word_img[:, SEG[0]:SEG[1]])):
            
            # breakpoint()
            # Case when starts with ش
            if SEGP[0] != -1 and \
                ((check_stroke(no_dots_copy, no_dots_copy[:, SEGP[0]:SEGP[1]], upper_base, lower_base, SEGP_SR1, SEGP_SR2) \
                and not check_dots(word_img[:, SEGP[0]:SEGP[1]]))\
                and (SR_idx == 0 or VP[SRL[SR_idx-1][1]] == 0 or (VP[SRL[SR_idx-1][1]] == 0 and SRL[SR_idx-1] in overlap))):
                
                SR_idx += 2
                continue
            else:
                valid_separation_regions.append(SR)
                SR_idx += 1
                continue
                
        # SEG is stroke without dots
        elif SEG[0] != -1\
            and (check_stroke(no_dots_copy, no_dots_copy[:, SEG[0]:SEG[1]], upper_base, lower_base, SEG_SR1, SEG_SR2) \
            and not check_dots(word_img[:, SEG[0]:SEG[1]])):

            # Case starts with س
            if SEGP[0] != -1\
                and (check_stroke(no_dots_copy, no_dots_copy[:, SEGP[0]:SEGP[1]], upper_base, lower_base, SEGP_SR1, SEGP_SR2) \
                and not check_dots(word_img[:, SEGP[0]:SEGP[1]])):

                SR_idx += 2
                continue

            # SEGN is stroke without dots
            if SEGN[0] != -1 \
                and (check_stroke(no_dots_copy, no_dots_copy[:, SEGN[0]:SEGN[1]], upper_base, lower_base, SEGN_SR1, SEGN_SR2) \
                and not check_dots(word_img[:, SEGN[0]:SEGN[1]])):

                valid_separation_regions.append(SR)
                SR_idx += 3
                continue

            # SEGN stroke with Dots and SEGNN stroke without Dots
            if SEGN[0] != -1\
                and (check_stroke(no_dots_copy, no_dots_copy[:, SEGN[0]:SEGN[1]], upper_base, lower_base, SEGN_SR1, SEGN_SR2) \
                and check_dots(word_img[:, SEGN[0]:SEGN[1]])) \
                and ((SEGNN[0] != -1 \
                and (check_stroke(no_dots_copy, no_dots_copy[:, SEGNN[0]:SEGNN[1]], upper_base, lower_base, SEGNN_SR1, SEGNN_SR2) \
                and not check_dots(word_img[:, SEGNN[0]:SEGNN[1]]))) or (len(SRL)-1-SR_idx == 2) or (len(SRL)-1-SR_idx == 3)):
        
                    valid_separation_regions.append(SR)
                    SR_idx += 3
                    continue
            
            # SEGN is not stroke or Stroke with Dots
            if SEGN[0] != -1 \
                and ((not check_stroke(no_dots_copy, no_dots_copy[:, SEGN[0]:SEGN[1]], upper_base, lower_base, SEGN_SR1, SEGN_SR2)) \
                or (check_stroke(no_dots_copy, no_dots_copy[:, SEGN[0]:SEGN[1]], upper_base, lower_base, SEGN_SR1, SEGN_SR2) \
                and check_dots(word_img[:, SEGN[0]:SEGN[1]]))):
                    
                    SR_idx += 1
                    continue
            
            SR_idx += 1
            continue
                

        if (len(valid_separation_regions) == 0 or\
            len(valid_separation_regions) > 0 and abs(cut_idx-valid_separation_regions[-1][1]) > 2): 
            valid_separation_regions.append(SR)
        SR_idx += 1

    return valid_separation_regions
コード例 #7
0
def check_stroke(no_dots_copy, segment, upper_base, lower_base, SR1, SR2):

    T = 1
    components, labels, stats, cen= cv.connectedComponentsWithStats(segment, connectivity=8)
    skeleton = skeletonize(segment.copy()).astype(np.uint8)
    (h, w) = segment.shape

    cnt = 0
    for label in range(1, components):
        if stats[label][4] > 3:
            cnt += 1
        else:
            segment[labels==label] = 0

    if cnt > 2 or cnt == 0:
        return False

    if check_hole(segment) or inside_hole(no_dots_copy, SR1[0], SR1[1]) or inside_hole(no_dots_copy, SR2[0], SR2[1]):
        return False

    HP = projection(skeleton, 'horizontal')
    VP = projection(segment, 'vertical')

    seg_l = -1
    seg_r = -1
    for i in range(0, len(VP)):
        if VP[i] != 0:
            seg_l = i
            break
    for i in range(len(VP)-1, -1, -1):
        if VP[i] != 0:
            seg_r = i
            break

    seg_width = seg_r - seg_l + 1
    SHPA = np.sum(HP[:upper_base])
    SHPB = np.sum(HP[lower_base+T+1:])
    MFV_HP = np.argmax(np.bincount(HP)[1:])+1
    MFV = lower_base - upper_base + 1 + T

    top_pixel = -1
    for i, proj in enumerate(HP):
        if proj != 0:
            top_pixel = i
            break
    height = upper_base-top_pixel
    
    VT = 0
    for i in range(w):
        if vertical_transitions(skeleton, i) > 2:
            VT += 1
    cnt = 0
    for proj in VP:
        if proj >= height:
            cnt += 2
        elif proj == height-1:
            cnt += 1
    # abs(MFV - MFV_HP) <= 2
    if SHPB == 0  and height <= 6 and VT <= 2 and seg_width <= 6 and cnt >= 2:
        return True

    return False
コード例 #8
0
def cut_points(word_img, VP, MFV, MTI, baseline_idx):
      
    # flag to know the start of the word
    f = 0

    flag = 0
    (h, w) = word_img.shape
    i = w-1
    separation_regions = []

    wrong = 0
    # loop over the width of the image from right to left
    while i >= 0:

        pixel = word_img[MTI, i]
        
        if pixel == 1 and f == 0:
            f = 1
            flag = 1

        if f == 1:

            # Get start and end of separation region (both are black pixels <----)
            if pixel == 0 and flag == 1:
                start = i+1
                flag = 0
            elif pixel == 1 and flag == 0:
                end = i         # end maybe = i not i+1
                flag = 1

                mid = (start + end) // 2

                left_zero = -1
                left_MFV = -1
                right_zero = -1
                right_MFV = -1
                # threshold for MFV
                T = 1

                j = mid - 1
                # loop from mid to end to get nearest VP = 0 and VP = MFV
                while j >= end:
                    
                    if VP[j] == 0 and left_zero == -1:
                        left_zero = j
                    if VP[j] <= MFV + T and left_MFV == -1:
                        left_MFV = j

                    # if left_zero != -1 and left_MFV != -1:
                    #     break

                    j -= 1

                j = mid
                # loop from mid to start to get nearest VP = 0 and VP = MFV
                while j <= start:

                    if VP[j] == 0 and right_zero == -1:
                        right_zero = j
                    if VP[j] <= MFV + T and right_MFV == -1:
                        right_MFV = j

                    if right_zero != -1 and right_MFV != -1:
                        break

                    j += 1

                # Check for VP = 0 first
                if VP[mid] == 0:
                    cut_index = mid
                elif left_zero != -1 and right_zero != -1:
                    
                    if abs(left_zero-mid) <= abs(right_zero-mid):
                        cut_index = left_zero
                    else:
                        cut_index = right_zero
                elif left_zero != -1:
                    cut_index = left_zero
                elif right_zero != -1:
                    cut_index = right_zero

                # Check for VP = MFV second
                # elif VP[mid] <= MFV+T:
                #     cut_index = mid
                elif left_MFV != -1:
                    cut_index = left_MFV
                elif right_MFV != -1:
                    cut_index = right_MFV
                else:
                    cut_index = mid


                seg = word_img[:, end:start]
                HP = projection(seg, 'horizontal')
                SHPA = np.sum(HP[:MTI])
                SHPB = np.sum(HP[MTI+1:])
                
                top = 0
                for idx, proj in enumerate(HP):
                    if proj != 0:
                        top = idx
                        break

                # if end == 24:
                #     breakpoint()
                # # if 9>=(int(SHPA) - int(SHPB)) >= 4 and sum(word_img[baseline_idx, end:start]) <= 1:
                # #     wrong = 1
                # breakpoint()
                cnt = 0
                for k in range(end, cut_index+1):
                    if vertical_transitions(word_img, k) > 2:
                        cnt = 1
                if SHPB == 0 and (baseline_idx - top) <= 5 and cnt == 1:
                    # breakpoint()
                    wrong = 1
                else:
                    separation_regions.append((end, cut_index, start))

        i -= 1

    return separation_regions, wrong