コード例 #1
0
ファイル: plugin.py プロジェクト: maning/inasafe
    def __init__(self, iface):
        """Class constructor.

        On instantiation, the plugin instance will be assigned a copy
        of the QGIS iface object which will allow this plugin to access and
        manipulate the running QGIS instance that spawned it.

        Args:
            iface - a Quantum GIS QGisAppInterface instance. This instance
                is automatically passed to the plugin by QGIS when it loads the
                plugin.
        Returns:
           None.
        Raises:
           no exceptions explicitly raised.
        """

        # Save reference to the QGIS interface
        self.iface = iface
        self.translator = None
        self.setupI18n()
        #print self.tr('InaSAFE')
        utilities.setupLogger()
コード例 #2
0
    def __init__(self, iface):
        """Class constructor.

        On instantiation, the plugin instance will be assigned a copy
        of the QGIS iface object which will allow this plugin to access and
        manipulate the running QGIS instance that spawned it.

        Args:
           iface - a Quantum GIS QGisAppInterface instance. This instance
           is automatically passed to the plugin by QGIS when it loads the
           plugin.
        Returns:
           None.
        Raises:
           no exceptions explicitly raised.
        """

        # Save reference to the QGIS interface
        self.iface = iface
        self.translator = None
        self.setupI18n()
        #print self.tr('InaSAFE')
        utilities.setupLogger()
コード例 #3
0
    transform=transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.1307, ), (0.3081, ))])),
                                          batch_size=100,
                                          shuffle=True,
                                          **kwargs)

manualSeed = 9302  #random.randint(1, 10000) # fix seed
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)

g_config = get_config()

model_dir = args.model_dir
setupLogger(os.path.join(model_dir, 'log.txt'))
g_config.model_dir = model_dir

criterion = nn.HingeEmbeddingLoss()
model = Siamese()

# load model snapshot
load_path = args.load_path
if load_path is not '':
    snapshot = torch.load(load_path)
    # loadModelState(model, snapshot)
    model.load_state_dict(snapshot['state_dict'])
    logging('Model loaded from {}'.format(load_path))

train_model(model,
            criterion,
コード例 #4
0
import os
import sys

# Add parent directory to path to make test aware of other modules
pardir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(pardir)

from utilities import setupLogger
setupLogger()