dotesting = 0 docrossvalidation = 0 doRoCLearning = 0 doBoundary = 0 doBinarySearch = 0 ncores = -1 doRoCLearningGradBoostClass = 1 # mfaggin ########################################################################################## # var_pt="pt_cand_ML" # var_signal="signal_ML" # path = "./plots/%.1f_%.1f_GeV"%(ptmin,ptmax) # checkdir(path) classifiers, names = getclassifiers() mylistvariables = getvariablestraining(optionClassification) mylistvariablesothers = getvariablesothers(optionClassification) myvariablesy = getvariableissignal(optionClassification) mylistvariablesx, mylistvariablesy = getvariablecorrelation( optionClassification) mylistvariablesall = getvariablesall(optionClassification) train_set = pd.read_pickle("../buildsample/trainsample%s.pkl" % (suffix)) test_set = pd.read_pickle("../buildsample/testsample%s.pkl" % (suffix)) X_train = train_set[mylistvariables] y_train = train_set[myvariablesy] X_test = test_set[mylistvariables] y_test = test_set[myvariablesy]
plotdir) scatterplot(train_set_ptsel_sig, train_set_ptsel_bkg, mylistvariablesx, mylistvariablesy, plotdir) correlationmatrix(train_set_ptsel_sig, plotdir, "signal") correlationmatrix(train_set_ptsel_bkg, plotdir, "background") if (doStandard == 1): X_train = GetDataFrameStandardised(X_train) if (doPCA == 1): n_pca = 5 X_train, pca = GetPCADataFrameAndPC(X_train, n_pca) plotvariancePCA(pca, plotdir) if (activateScikitModels == 1): classifiersScikit, namesScikit = getclassifiers() classifiers = classifiers + classifiersScikit names = names + namesScikit if (activateKerasModels == 1): classifiersDNN, namesDNN = getclassifiersDNN(len(X_train.columns)) classifiers = classifiers + classifiersDNN names = names + namesDNN if (dotraining == 1): trainedmodels = fit(names, classifiers, X_train, y_train) savemodels(names, trainedmodels, output, suffix) if (dotesting == 1): filenametest_set_ML = output + "/testsample%sMLdecision.pkl" % (suffix) filenametest_set_ML_root = output + "/testsample%sMLdecision.root" % (