コード例 #1
0
ファイル: main.py プロジェクト: githubmlai/TCCS
#                     likelihood_measure.calc_likelihood(hurst_related_exponent_local,
#                                                        characteristic_dist_local,
#                                                        fft_well_log,
#                                                        list_wave_number,
#                                                        squared_energy_of_window,
#                                                        variance_gaussian_noise_time_domain)
#         return output


if __name__ == '__main__':

    # ###############################################
    #       Choose test to run
    test_to_run = 'likelihood'
    # ###############################################
    for case in math_op.switch(test_to_run):
        if case('likelihood'):

            # ##################################################################
            #                USER CONFIG: choose run parameters
            # ##################################################################
            do_parallel = 0
            num_value_well_log = 2 ** 12
            no_noise = 0  # if true, no noise in observed well log e.g well log is exactly von karman spectrum

            hurst_related_exponent_true = 0.5  # (-0.25,  -0.25,  0.25,   0.5, 0.75)
            characteristic_dist_true = 5.0  # [m]   # (10.0,  5.00, 10.00, 5.00, 3)
            mean_gaussian_noise_time_domain = 0.0
            variance_gaussian_noise_time_domain_true = 1.0e-10

            hurst_hurst_related_exponent_guess_start = max(hurst_related_exponent_true - 0.45, -0.49)
コード例 #2
0
ファイル: main.py プロジェクト: githubmlai/TCCS
    print 'l2_regression_powers_error = %g' % l2_regression_powers_error
    print 'l2_median_balance_powers_error / l2_regression_powers_error = %g' % (l2_median_balance_powers_error/l2_regression_powers_error)


    
    return output



if __name__ == '__main__':


    ##########choose test##########################    
    test_to_run = 'median_balance'
    #################################################3
    for case in math_op.switch(test_to_run):
        if case('compare_medianbal_vs_regression'):
            list_of_power = np.array([2]*10)
            output = compareMedianBalanceVsRegressionGivenGroundTruth(
                                 list_of_power, 
                                 num_time_sample = 2000,
                                 origin_time_sample = 1,
                                 delta_time_sample = 0.002, 
                                 width_parameter_ricker_wavelet = 10, 
                                 noise_level = 0)
            powers_col_by_col = np.transpose(np.vstack((output.list_median_balance_recovered_power,output.list_regression_recovered_power)))
            plt.figure()
            plt.hist(powers_col_by_col,
                     histtype='bar',
                     label=['median balance', 'regression'])
            plt.legend()