コード例 #1
0
ファイル: p49.py プロジェクト: QasimK/Project-Euler-Python
def p49():
    primes_list = primes2.PrimeList()
    primes_list.sieve(10000)

    # Group together all primes in the same permutation group
    permutations = {}
    for prime in primes_list.get_primes_in(range(1000, 10000)):
        prime_sorted_digits = tuple(sorted(str(prime)))
        if prime_sorted_digits in permutations:
            permutations[prime_sorted_digits].append(prime)
        else:
            permutations[prime_sorted_digits] = [prime]

    # Keep only those with at least three primes
    permutations = {
        sorted_digits: primes
        for sorted_digits, primes in permutations.items() if len(primes) >= 3
    }

    # Get arithmetic sequences of length 3
    progressives = []
    for primes in permutations.values():
        # Pick all prime triplets
        for combo in combinations(primes, 3):
            #Check for progression
            if combo[2] - combo[1] == combo[1] - combo[0]:
                progressives.append(combo)

    #There should be two sequences
    assert len(progressives) == 2
    # Remove known sequence
    progressives.remove((1487, 4817, 8147))

    the_seq = progressives[0]
    return ''.join(str(prime) for prime in the_seq)
コード例 #2
0
def p41():
    MAX_NUM = 7654321
    prime_list = primes2.PrimeList()
    prime_list.sieve(MAX_NUM)

    max_prime_pandigital = 0
    for prime in prime_list.get_primes_in(generic.grange(MAX_NUM, -1)):
        if ''.join(sorted(str(prime))) == '1234567':
            max_prime_pandigital = prime
            break

    return max_prime_pandigital
コード例 #3
0
ファイル: p46.py プロジェクト: QasimK/Project-Euler-Python
def p46():
    primes = primes2.PrimeList()

    for odd in generic.grange(35, 2):
        if primes.is_prime(odd):
            continue
        for psquare in range(1, math.floor(math.sqrt((odd - 3) / 2)) + 1):
            square = 2 * psquare**2
            if primes.is_prime(odd - square):
                break
        else:
            return odd
コード例 #4
0
ファイル: p35.py プロジェクト: QasimK/Project-Euler-Python
def p35():
    prime_list = primes.PrimeList()
    prime_list.sieve(1000000)
    
    number = 1 #NOTE: 2 is blocked out by (***)
    for prime in prime_list.get_primes():
        if prime >= 10**6:
            break
        
        #(***)
        if any(x in str(prime) for x in ["0", "2" ,"4", "6", "8"]):
            continue
        
        for rotation in integers.get_rotations(prime):
            if not prime_list.is_prime(rotation):
                break
        else:
            #Did not break => They are all prime
            number += 1
    return number
コード例 #5
0
ファイル: p37.py プロジェクト: QasimK/Project-Euler-Python
Find the sum of the only eleven primes that are both truncatable from
left to right and right to left.

NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.

Answer: 748317
"""

"""Thoughts:
Note 379 is not a truncatable prime even though it is from 3797.
"""

import utility.primes2 as p33

pl = p33.PrimeList()

def get_truncates(prime):
    #Remove from right
    str_prime = str(prime)
    if not pl.is_prime(int(str_prime[-1]))\
    or not pl.is_prime(int(str_prime[0])):
        return None
    
    truncated_primes = []
    #Truncate from right first
    for i in range(1, len(str_prime)-1):
        new_prime = int(str_prime[:-i])
        if not pl.is_prime(new_prime):
            break
        else:
コード例 #6
0
 def setUp(self):
     self.prime_list = primes.PrimeList()