コード例 #1
0
ファイル: dirinf.py プロジェクト: nightingale0131/lamp
    def edge_updater(self):
        # publishes to edge_state
        rate = rospy.Rate(10)  # Hz
        while not rospy.is_shutdown():
            # check that costmap subscriber has started receiving messages
            if self.costmap == None or self.robot_pose == None:
                continue

            rospy.loginfo("-----")
            rospy.loginfo("Calculating visibility polygon...")
            self.set_visibility_polygon()

            rospy.loginfo("Checking edges...")
            for (u, v) in self.base_graph.edges():
                dist_to_u = util.euclidean_distance(self.base_graph.pos(u),
                                                    self.robot_pose)
                dist_to_v = util.euclidean_distance(self.base_graph.pos(v),
                                                    self.robot_pose)

                edge_in_range = ((dist_to_u <= self.robot_range)
                                 or (dist_to_v <= self.robot_range))

                edge_in_submap = (
                    self.curr_submap == self.base_graph.get_polygon(u, v))

                if edge_in_range or edge_in_submap:
                    edge_state, edge_weight = self.check_edge(u, v)

                    # prepare message
                    msg = EdgeUpdate(str(u), str(v), edge_state, edge_weight)
                    self.edge_state_pub.publish(msg)
                    rate.sleep(
                    )  # not sure if this is the right place to put this
コード例 #2
0
ファイル: planner.py プロジェクト: nightingale0131/lamp
    def feedback_cb(self, feedback):
        # print current pose at each feedback
        # feedback is MoveBaseFeedback type msg
        pose = feedback.base_position.pose

        rospy.logdebug("Feedback for goal " + str(self.goal_cnt) + ":\n" +
                       self.print_pose_in_euler(pose))
        rospy.loginfo("Feedback for goal {}: vprev = {}, vnext = {}".format(
            self.goal_cnt, self.vprev, self.vnext))
        self.v_publisher.publish(str(self.vprev), str(self.vnext))

        # check if robot is close enough to send next goal
        position = feedback.base_position.pose.position
        (x, y) = (position.x, position.y)

        # update distance travelled and current position
        self.update_travel_dist(util.euclidean_distance((x, y), self.pos))
        self.pos = (x, y)

        curr_goal = self.pose_seq[self.goal_cnt].position
        (gx, gy) = (curr_goal.x, curr_goal.y)

        dist_to_curr_goal = util.euclidean_distance((x, y), (gx, gy))

        if dist_to_curr_goal < TOL:
            if self.vprev != self.vnext and self.mode != "naive":
                self.curr_graph.update_edge(self.vprev, self.vnext,
                                            self.base_map.G.UNBLOCKED)
            if self.goal_cnt < len(self.pose_seq) - 1:
                rospy.loginfo("Goal pose " + str(self.goal_cnt) + " reached!")
                self.goal_cnt += 1
                self.set_and_send_next_goal()
            elif (self.goal_cnt == len(self.pose_seq) - 1):
                rospy.loginfo("Reached end of path")

        if self.completed_observation():
            # if node under observation is no longer unknown, move to next node
            # selecting next node in tree and setting path
            if self.mode == "policy":
                rospy.loginfo("SUSPENDING CALLBACKS...")
                self.suspend = True
                (u, v) = self.observation.E
                state = self.curr_graph.edge_state(u, v)

                # move to next node
                self.node = self.node.next_node(state)
                self.observation = self.node.opair
                self.set_new_path(self.node.path)  # update pose seq
                self.set_and_send_next_goal()
コード例 #3
0
ファイル: dirinf.py プロジェクト: nightingale0131/lamp
    def dist(self, cell1, cell2):
        # heuristic for A*, cell1 and cell2 don't have to be neighbours

        if not (self.passable(cell1) and self.passable(cell2)):
            return float('inf')

        return util.euclidean_distance(cell1, cell2)
コード例 #4
0
ファイル: planner.py プロジェクト: nightingale0131/lamp
    def plan_callback(self, data):
        # constantly checking returned rospath. If it exits the reg mark path as blocked
        # extracting needed data

        vnext = self.vnext
        vcurr = self.vprev

        if len(data.poses) > 0 and not self.suspend:
            plan_dest = (data.poses[-1].pose.position.x,
                         data.poses[-1].pose.position.y)

            if not (vnext == vcurr
                    or self.path_blocked or util.euclidean_distance(
                        plan_dest, self.curr_graph.pos(vnext)) > 0.25):
                # Conditions explained:
                # 1. if vnext == vcurr, robot is going back to where it came from, and I assume
                # it can take the way it came to get back
                # 2. if path_blocked = true, this means it's in the middle of replanning so
                # vnext is being changed
                # 3. if the final destination of given plan is not vnext, don't check
                # 4. if path is empty don't check

                rospath = to_2d_path(data)

                rospy.loginfo("Checking edge ({},{})".format(vcurr, vnext))
                rospy.logdebug("Path: {}".format(
                    util.print_coord_list(rospath)))

                curr_edge_state = self.curr_graph.check_edge_state(
                    vcurr, vnext, rospath, PADDING, False)
                rospy.loginfo(
                    "  result of check_edge_state: {}".format(curr_edge_state))

                if self.belief != []:
                    result = self.update_belief(vcurr, vnext, curr_edge_state)
                    if result == True:
                        self.client.cancel_goals_at_and_before_time(
                            rospy.get_rostime())
                        self.replan()
                        return

                if (self.mode == "policy" or self.entered_openloop == True):
                    if (curr_edge_state == self.base_map.G.BLOCKED
                            and not self.edge_under_observation(vnext, vcurr)
                            and not self.suspend):
                        # recalculate path on curr_graph
                        self.path_blocked = True

                    if self.path_blocked:
                        rospy.loginfo("plan_cb: Path is blocked!")
                        self.client.cancel_goals_at_and_before_time(
                            rospy.get_rostime())
                        self.replan()
                        return

        self.posearray_publisher.publish(self.conv_to_PoseArray(self.pose_seq))
コード例 #5
0
def costfn3(known_cost_to_v, v, u, goal, outcomes, supermaps, p_Xy,
            robot_range):
    '''
    Takes into account that submaps are convex, uses that to give better cost estimate.
    Supermaps[i].G must be TGraph class object!
    '''
    tg = supermaps[
        0].G  # use this to get polygon, all of the supermaps should be identical
    edge_est = tg.min_mid_dist(v, u)
    unblocked_est = max(0, edge_est -
                        (robot_range / 2.0))  # Exp travel along edge before
    # obsving edge is unblocked
    line = LineString([tg.pos(v), tg.pos(u)])
    midpt = line.centroid
    o_pt = line.interpolate(unblocked_est)

    vlist = tg.get_vertices_in_polygon(tg.get_polygon(v, u))

    # Currently it's only possible to have 2 outcomes
    # All the variables should return something, because if all other vertices are
    # blocked, it should return v as ub and uu
    for outcome in outcomes:
        if outcome.state == tg.BLOCKED:
            blocked_p = outcome.p
            blocked_exp_cost, ub = min_exp_cost(midpt, v, goal, vlist, outcome,
                                                supermaps, p_Xy)
            blocked_exp_cost += util.euclidean_distance((midpt.x, midpt.y),
                                                        tg.pos(v))
        elif outcome.state == tg.UNBLOCKED:
            unblocked_p = outcome.p
            # calc expected cost from end_u
            unblocked_exp_cost, uu = min_exp_cost(o_pt, v, goal, vlist,
                                                  outcome, supermaps, p_Xy)
            unblocked_exp_cost += util.euclidean_distance((o_pt.x, o_pt.y),
                                                          tg.pos(v))

    exp_cost = (known_cost_to_v + blocked_p * blocked_exp_cost +
                unblocked_p * unblocked_exp_cost)

    return (uu, ub, exp_cost)
コード例 #6
0
ファイル: kmeans.py プロジェクト: humoncy/mlhw5
def k_means(data, k):
    print("K-means clustering...")
    print("Data shape for K-means:", data.shape)
    if data.ndim == 1:
        raise Exception(
            "Reshape your data either using array.reshape(-1, 1) if your data has a single feature "
            "or array.reshape(1, -1) if it contains a single sample.")

    num_samples = data.shape[0]
    # First column stores which cluster this sample belongs to,
    # Second column stores the error between this sample and its centroid
    cluster_assignment = np.zeros((num_samples, 2))
    cluster_changed = True

    # Step 1: init centroids
    centroids = init_centroids(data, k)
    # show_cluster(data, k, cluster_assignment[:, 0], centroids, title="K-means, initial centroids")

    num_iterations = 0
    while cluster_changed:
        cluster_changed = False
        # for each sample
        for j in range(num_samples):
            min_distance = 100000.0
            min_index = 0
            # for each centroid
            # Step 2: find the centroid who is closest
            for i in range(k):
                distance = euclidean_distance(data[j], centroids[i])
                if distance < min_distance:
                    min_distance = distance
                    min_index = i

            # Step 3: update its cluster
            if cluster_assignment[j, 0] != min_index:
                cluster_changed = True
                cluster_assignment[j] = min_index, np.power(min_distance, 2)

        # Step 4: update centroids
        for i in range(k):
            points_in_cluster = data[np.nonzero(cluster_assignment[:,
                                                                   0] == i)[0]]
            centroids[i] = np.mean(points_in_cluster, axis=0)

        # title = "K-means, #iter:" + num_iterations.__str__()
        # show_cluster(data, k, cluster_assignment[:, 0], centroids, title=title)

        num_iterations += 1

    # show_cluster(data, k, cluster_assignment[:, 0], title="eigen_space")

    return centroids, cluster_assignment[:, 0]
コード例 #7
0
ファイル: PAM.py プロジェクト: sumesh1/MLWithPytorch
    def calculate_cost(self, X, clusters, medoids):
        """
        Total distance between samples and their medoid
        :param clusters: Three medoids with samples assigned to each of them
        :return: Total distance as mentioned above
        """
        cost = 0
        for i, cluster in enumerate(clusters):
            medoid = medoids[i]
            for sample_i in cluster:
                cost += euclidean_distance(X[sample_i], medoid)

        return cost
コード例 #8
0
ファイル: tgraph.py プロジェクト: nightingale0131/lamp
    def add_connected_vertex(self,
                             label,
                             location,
                             last_vertex,
                             add_blocked=False):
        # automatically adds edges to portals in the same polygon
        # label - string
        # location - (x,y), in reference to map
        # last_vertex - last vertex that robot passed

        # add vertex
        self.graph.add_node(label, defn=Point(location))

        # find polygon (search all edges that are adjacent to originating portal)
        curr_poly = None
        searched_polygons = []  # there's only two associated with any portal
        for neighbor in self.graph.neighbors_iter(last_vertex):
            logger.info("Checking polygon of ({},{})".format(
                last_vertex, neighbor))
            poly = self.get_polygon(last_vertex, neighbor)
            if poly not in searched_polygons:
                searched_polygons.append(poly)
                if self.in_polygon(location, poly):
                    curr_poly = poly
                    break

        # add edges to all portals that are unblocked/unknown to originating portal
        for portal in self.get_vertices_in_polygon(poly):
            if last_vertex != portal:
                state = self.edge_state(last_vertex, portal)
            else:
                state = self.UNBLOCKED

            if state != self.BLOCKED:
                weight = util.euclidean_distance(self.pos(label),
                                                 self.pos(portal))
                self.graph.add_edge(label,
                                    portal,
                                    weight=weight,
                                    state=state,
                                    polygon=curr_poly)
            elif add_blocked == True and state == self.BLOCKED:
                self.graph.add_edge(label,
                                    portal,
                                    weight=float('inf'),
                                    state=self.BLOCKED,
                                    polygon=curr_poly)

        logger.info("Added new vertex {}".format(label))
        logger.info(self)
コード例 #9
0
ファイル: PAM.py プロジェクト: sumesh1/MLWithPytorch
 def closest_medoid(self, sample, medoids):
     """
     Calculate distance between each sample and every medoids
     :param sample: Data point
     :param medoids: Similar to centroid in KMeans.
     :return: Assigining medoid to each sample
     """
     closest_i = None
     closest_distance = float('inf')
     for i, medoid in enumerate(medoids):
         distance = euclidean_distance(sample, medoid)
         if distance < closest_distance:
             closest_i = i
             closest_distance = distance
     return closest_i
コード例 #10
0
    def get_neighbors(self, test_row):
        distances = list()
        zippedTrainingData = zip(self.trainX, self.trainY)

        for train_row in zippedTrainingData:
            features = train_row[0]
            label = train_row[1]
            dist = euclidean_distance(test_row, features)
            distances.append((features, label, dist))

        distances.sort(key=lambda tup: tup[2])  # Sort according to the dist
        neighbors = list()
        for i in range(self.num_neighbors):
            neighbors.append(distances[i][1])
        return neighbors
コード例 #11
0
def min_exp_cost(est_loc, vs, goal, ulist, outcome, supermaps, p_Xy):
    '''
    est_loc - shapely Point class object
    vs      - vertex that robot started observation from
    goal    - vertex
    ulist   - list of vertices
    outcome - Outcome class object
    supermaps - list of Map class objects
    p_Xy - p(X = i|Y), probability of being in map i given the belief Y

    Return min_exp_cost, min_u
    '''
    tg = supermaps[0].G
    min_u = None
    min_expcost = float('inf')

    logger.info("Calculating min exp cost for {}".format(list(est_loc.coords)))
    for u in ulist:
        dist = util.euclidean_distance((est_loc.x, est_loc.y), tg.pos(u))
        expcost = dist + expected_cost_outcome(u, goal, outcome, supermaps,
                                               p_Xy)
        logger.info("  ({},{}): dist={:.2f}, expcost={:.2f}".format(
            vs, u, dist, expcost))

        # check that edge is not blocked in any i of the outcome's belief
        if vs == u:
            if min_u == None or expcost < min_expcost:
                logger.info("  Set as min")
                min_u = u
                min_expcost = expcost
        else:
            for i in outcome.Yo:
                if supermaps[i].G.edge_state(vs, u) == tg.BLOCKED:
                    break
            else:
                if min_u == None or expcost < min_expcost:
                    logger.info("  Set as min")
                    min_u = u
                    min_expcost = expcost

    assert (min_u != None), ("min_u = None! This is not right! Check logs.")

    return min_expcost, min_u
コード例 #12
0
ファイル: tgraph.py プロジェクト: nightingale0131/lamp
 def min_mid_dist(self, u, v):
     a = self.pos(u)
     b = self.pos(v)
     return util.euclidean_distance(a, b)
コード例 #13
0
def spawn_obstacles():
    # obstacle probabilities
    bgi_prob = 0.5
    a_prob = 0.1
    ce_prob = 0.5
    dfh_prob = 0.4
    i_prob = 0
    ii_prob = 0 
    iii_prob = 0.9
    vi_prob = 0
    vii_prob = 0
    viii_prob = 0

    random.seed()
    cmd = ''
    del_cmd = ''
    obstacles = []
    v_spawn = False #only spawn dumpster_v if dumpster_vi or dumpster_vii present
    avoid_set = [(18.25,17.521),(16.681,3.661),(16.681,6.725),(14.182,8.204),(14.294,17.532),(10.169,8.204),(10.168,17.558),(5.787,3.507),(2.841,6.814)] #list of doorway locations to prevent spawning debris in doorways 

    suff = random.randint(0,100) # random suffix to all model names
    barriers = []

    if random.random() < bgi_prob:
        barriers += ['B', 'G', 'I']

    if random.random() < a_prob:
        barriers += ['A']

    if random.random() < ce_prob:
        barriers += ['C', 'E']
        # ii_prob = 1 # correlate w/ dumpsters b/w (2,7)

    if random.random() < dfh_prob:
        barriers += ['D', 'F', 'H']

    # add barriers to cmd
    for letter in barriers:
        temp_cmd, temp_del, model_name = barrier(letter, suff)
        cmd += temp_cmd
        del_cmd += temp_del
        obstacles += [model_name]

    if random.random() < i_prob: 
        x_pos1 = 18.424
        x_pos2 = 17.198
        y_pos = random.random()*6.0 + 9.0
        model_name1 = 'block_i_1_{}'.format(suff)
        model_name2 = 'block_i_2_{}'.format(suff)
        cmd += ("rosrun gazebo_ros spawn_model " + 
                "-database drc_practice_orange_jersey_barrier " + 
                "-gazebo -model " + model_name1 + " -x " + str(x_pos1) + 
                " -y " + str(y_pos) + " -Y 1.571\n")
        cmd += ("rosrun gazebo_ros spawn_model " + 
                "-database drc_practice_blue_cylinder " +
                "-gazebo -model " + model_name2 + " -x " + str(x_pos2) +
                " -y " + str(y_pos) + "\n")
        del_cmd += ('rosservice call gazebo/delete_model block_i_1\n' + 
                'rosservice call gazebo/delete_model block_i_2\n')
        obstacles += [model_name1, model_name2]
        avoid_set.extend([(x_pos1,y_pos), (x_pos2,y_pos)])

    if random.random() < ii_prob: 
        x_pos1 = 15.067
        x_pos2 = 12.918
        y_pos = random.random()*5.0 + 10.0
        model_name1 = "dumpster_ii_1_{}".format(suff)
        model_name2 = "dumpster_ii_2_{}".format(suff)
        cmd += ("rosrun gazebo_ros spawn_model -database dumpster" + 
                " -gazebo -model " + model_name1 + " -x " + str(x_pos1) + 
                ' -y ' + str(y_pos) + " -Y 0\n" + 
                "rosrun gazebo_ros spawn_model -database dumpster" + 
                " -gazebo -model " + model_name2 + " -x " + str(x_pos2) + 
                ' -y ' + str(y_pos) + ' -Y 1.570796\n')
        del_cmd += 'rosservice call gazebo/delete_model dumpster_ii_1\n\
            rosservice call gazebo/delete_model dumpster_ii_2\n'
        obstacles += [model_name1, model_name2]
        avoid_set.append((x_pos1, y_pos))
        avoid_set.append((x_pos2, y_pos))

    if random.random() < iii_prob: 
        x_pos = random.random()*4.0 + 6.6
        y_pos1 = 11.42
        y_pos2 = 9.5
        model_name1 = "dumpster_iii_1_{}".format(suff)
        model_name2 = "dumpster_iii_2_{}".format(suff)
        cmd += ('rosrun gazebo_ros spawn_model -database dumpster\
                 -gazebo -model ' + model_name1 + 
                ' -x ' + str(x_pos) + ' -y ' + str(y_pos1) + ' -Y 0.0\n\
                rosrun gazebo_ros spawn_model -database dumpster\
                 -gazebo -model ' + model_name2 + 
                ' -x ' + str(x_pos) + ' -y ' + str(y_pos2) + ' -Y 0.0\n')
        del_cmd = del_cmd + 'rosservice call gazebo/delete_model dumpster_iii_1\n\
            rosservice call gazebo/delete_model dumpster_iii_2\n'
        obstacles += [model_name1, model_name2]
        avoid_set.append((x_pos,y_pos1))
        avoid_set.append((x_pos,y_pos2))

    if random.random() < vi_prob: 
        x_pos1 = 12.774
        y_pos1 = 6.486
        v_spawn = True
        model_name = "dumpster_vi_{}".format(suff)
        cmd += ('rosrun gazebo_ros spawn_model -database dumpster\
                 -gazebo -model ' + model_name +  
                ' -x ' + str(x_pos1) + ' -y ' + str(y_pos1) + ' -Y -1.160\n')
        del_cmd += 'rosservice call gazebo/delete_model dumpster_vi\n'
        obstacles += [model_name]
        avoid_set.append((x_pos1,y_pos1))

    if random.random() < vii_prob: 
        x_pos = 13.127 
        y_pos = 3.735
        v_spawn = True
        model_name = "dumpster_vii_{}".format(suff)
        cmd += ('rosrun gazebo_ros spawn_model -database dumpster\
                 -gazebo -model ' + model_name + 
                ' -x ' + str(x_pos) + ' -y ' + str(y_pos) + ' -Y -1.567\n')
        del_cmd += 'rosservice call gazebo/delete_model dumpster_vii\n'
        obstacles += [model_name]
        avoid_set.append((x_pos,y_pos))

    if v_spawn:
        x_pos = 15.198
        y_pos = 4.968 
        model_name = "dumpster_v_{}".format(suff)
        cmd += ('rosrun gazebo_ros spawn_model -database dumpster -gazebo -model ' + 
                model_name + ' -x ' + str(x_pos) + ' -y ' + str(y_pos) + ' -Y 0.0\n')
        del_cmd += 'rosservice call gazebo/delete_model dumpster_v\n'
        obstacles += [model_name]
        avoid_set.append((x_pos,y_pos))

    if random.random() < viii_prob: 
        x_pos = 4.3266
        y_pos = 5.1462
        model_name = "dumpster_viii_{}".format(suff)
        cmd += ('rosrun gazebo_ros spawn_model -database dumpster\
                 -gazebo -model ' + model_name +  
                ' -x ' + str(x_pos) + ' -y ' + str(y_pos) + ' -Y 1.092\n')
        del_cmd += 'rosservice call gazebo/delete_model dumpster_viii\n'
        obstacles += [model_name]
        avoid_set.append((x_pos,y_pos))

    num_debris = random.randint(0,11)
    num_spawned = 0
    nloops = 0 
    while num_spawned < num_debris:
        # prevent infinite loops
        nloops += 1
        if nloops > 1000: break

        loc = random.random()
        if loc < 0.1: #a
            x_pos = 18.8
            ymin = 6
            ymax = 16.75
            y_pos = (ymax-ymin)*random.random()+ymin
        elif loc < 0.2: #b
            x_pos = 17.4
            ymin = 6.0
            ymax = 16.75
            y_pos = (ymax-ymin)*random.random()+ymin		
        elif loc < 0.4: #c
            xmin = 12.585
            xmax = 15.95
            x_pos = (xmax-xmin)*random.random()+xmin
            ymin = 8.91
            ymax = 16.75
            y_pos = (ymax-ymin)*random.random()+ymin
        elif loc < 0.6: #d
            xmin = 6.55
            xmax = 15.95
            x_pos = (xmax-xmin)*random.random()+xmin
            ymin = 3.0
            ymax = 7.45
            y_pos = (ymax-ymin)*random.random()+ymin
        elif loc < 0.7: #e
            xmin = 3.58
            xmax = 5.0
            x_pos = (xmax-xmin)*random.random()+xmin
            ymin = 3.0
            ymax = 7.48
            y_pos = (ymax-ymin)*random.random()+ymin
        elif loc < 0.85: #f1
            xmin = 3.58
            xmax = 11.11
            x_pos = (xmax-xmin)*random.random()+xmin
            ymin = 8.93
            ymax = 11.94
            y_pos = (ymax-ymin)*random.random()+ymin
        else: #f2
            xmin = 3.58
            xmax = 11.11
            x_pos = (xmax-xmin)*random.random()+xmin
            ymin = 13.4
            ymax = 16.8
            y_pos = (ymax-ymin)*random.random()+ymin
        if all(euclidean_distance(coord,(x_pos,y_pos))>3.0 for coord in avoid_set):
            model_name = "debris{}_{}".format(num_spawned, suff)
            cmd += ('rosrun gazebo_ros spawn_model -database drc_practice_blue_cylinder\
                    -gazebo -model ' + model_name + ' -x ' + str(x_pos) + ' -y ' + str(y_pos) + ' -Y 0.0\n')
            del_cmd = del_cmd + 'rosservice call gazebo/delete_model debris' + str(num_spawned) + '\n'
            obstacles += [model_name]
            avoid_set.append((x_pos, y_pos))
            num_spawned = num_spawned + 1
    os.system(cmd)
    return obstacles
コード例 #14
0
def visible_set(gridGraph, observationPoint, obstacles):
    # obstacles - list of visilibity polygons

    # setup environment and observer location
    ox = int((observationPoint[0] - gridGraph.origin[0]) / gridGraph.img_res)
    oy = int((-observationPoint[1] + gridGraph.origin[1]) /
             gridGraph.img_res) + gridGraph.imgheight
    # print(ox)
    # print(oy)

    isovist = visibility_polygon(ox, oy, env)
    isocnt = save_print_contour(isovist)

    # prep visualization
    # image = gridGraph.occ_grid.copy()
    # image[np.where(image == 0)] = 255 # easier to see
    # cv2.drawContours(image, [isocnt],-1, 0, 2)

    # find visible edges
    visible_set = []

    if len(isocnt) == 0:
        logger.warn('Simplified visibility polygon is empty for {}!'.format(
            observationPoint))
        return visible_set

    for edge in list(gridGraph.graph.edges()):
        (node1, node2) = edge
        (xloc1, yloc1) = gridGraph.graph.node[node1]['pos']
        (xloc2, yloc2) = gridGraph.graph.node[node2]['pos']
        x1 = int((xloc1 - gridGraph.origin[0]) / gridGraph.img_res)
        y1 = int(((-yloc1 + gridGraph.origin[1]) / gridGraph.img_res) +
                 gridGraph.imgheight)
        x2 = int((xloc2 - gridGraph.origin[0]) / gridGraph.img_res)
        y2 = int(((-yloc2 + gridGraph.origin[1]) / gridGraph.img_res) +
                 gridGraph.imgheight)

        pt1_visible = point_in_polygon(isocnt, (x1, y1))
        pt2_visible = point_in_polygon(isocnt, (x2, y2))
        visible = pt1_visible and pt2_visible
        at_least_one_endpt_visible = pt1_visible or pt2_visible

        if at_least_one_endpt_visible:
            for i in range(1, len(isocnt)):
                if line_segments_intersect((isocnt[i - 1][0], isocnt[i][0]),
                                           ((x1, y1), (x2, y2))):
                    visible = False
                    visIntersect = intersection_point(
                        line_eqn(isocnt[i - 1][0], isocnt[i][0]),
                        line_eqn((x1, y1), (x2, y2)))
                    # if intersection_point returns False here, it means
                    # the lines are parallel and overlap each other
                    for obstacle in obstacles:
                        for j in range(1, obstacle.n()):
                            if line_segments_intersect(
                                ((obstacle[j - 1].x(), obstacle[j - 1].y()),
                                 (obstacle[j].x(), obstacle[j].y())),
                                ((x1, y1), (x2, y2))):
                                obsIntersect = intersection_point(
                                    line_eqn(
                                        (obstacle[j - 1].x(),
                                         obstacle[j - 1].y()),
                                        (obstacle[j].x(), obstacle[j].y())),
                                    line_eqn((x1, y1), (x2, y2)))
                                if (visIntersect == False) or (
                                        obsIntersect
                                        == False) or util.euclidean_distance(
                                            visIntersect, obsIntersect
                                        ) < 0.1 / gridGraph.img_res:
                                    visible = True
        if visible:
            visible_set.append(edge)
            # cv2.line(image,(x1,y1),(x2,y2),0)

    # cv2.circle(image, (ox, oy), 5, (0,0,255), thickness=-1)
    # cv2.imshow("Image", image)
    # cv2.waitKey(0)
    return visible_set