コード例 #1
0
def Segment():
    patient = readindex()
    patient = np.array(patient)
    for i in range(25):
        data = DataProcess(i + 1)
        print('data shape:' + str(data.shape))
        OUTMHA = np.zeros([data.shape[0], data.shape[1], data.shape[2]])
        for x in range(data.shape[0]):
            for y in range(data.shape[1] - 64):
                x1, x2 = Getbatch(data, x, y + 32)
                print('x1,x2:' + str(x1.shape) + str(x2.shape))
                X1 = tf.placeholder(dtype=tf.float32,
                                    shape=[None, 65, 65, 4],
                                    name='big_patch')
                X2 = tf.placeholder(dtype=tf.float32,
                                    shape=[None, 33, 33, 4],
                                    name='small_patch')
                OUT = Network(X1, X2, data.shape[2] - 64)
                config = tf.ConfigProto()
                config.gpu_options.allow_growth = True
                sess = tf.Session(config=config)
                saver = tf.train.Saver()
                saver.restore(
                    sess=sess,
                    save_path=
                    'E:/zhangjinjing/brain2D/brats2013/brain_session_2013_kongdong.ckpt'
                )
                OUT = sess.run(OUT, feed_dict={X1: x1, X2: x2})
                OUTMHA[x, y, 32:data.shape[2] - 32] = np.argmax(OUT, 1)
        print(OUTMHA.shape)
        util.save_nuarray_as_mha(
            'E://zhangjinjing/brain2D/2013test/VSD.Seg_HG_001.' +
            str(patient[i]) + '.mha', OUTMHA)
コード例 #2
0
def segment_unparalel(patient_parent_file, description, model, extra_file):

    before = int(round(time.time() * 1000))
    print("unparalel segmentation")
    print(patient_parent_file)
    p = Patient()
    p.set_parent_file(patient_parent_file)
    p.set_window_size(model_setup.window_size)

    p.start_iteration()

    print(p.file_FLAIR)
    image_name = re.findall(r'\d+', p.file_FLAIR)
    image_name = image_name[len(image_name) - 1]

    path_ttt, file_nnn = os.path.split(patient_parent_file)
    image_name = "VSD." + description + "_(" + file_nnn + ")." + image_name + ".mha"
    print("result name : %s" % image_name)

    file_result_name = os.path.join(patient_parent_file, image_name)
    extra_file = os.path.join(extra_file, image_name)

    if (os.path.isfile(file_result_name)):
        return

    segmentation = numpy.zeros(shape=p.label.shape)
    z = 0
    utility.save_nuarray_as_mha(file_result_name, segmentation)
    utility.save_nuarray_as_mha(extra_file, segmentation)

    while z < p.limit_z:
        for y in range(0, p.limit_y):
            if (y % 10 == 0):
                print("%s %s" % (z, y))
            for x in range(0, p.limit_x):
                if (p.is_back_ground(z, y, x)):
                    segmentation[z][y][x] = 0
                else:
                    t, g = p.get_batch_at(z, y, x)
                    features = []
                    features.append(t)
                    features = numpy.asarray(features)
                    features = features.astype('float32')
                    r = model.predict_classes(features,
                                              batch_size=1,
                                              verbose=False)
                    segmentation[z][y][x] = r

        z += 1

    utility.save_nuarray_as_mha(file_result_name, segmentation)
    utility.save_nuarray_as_mha(extra_file, segmentation)
    p.stop_iteration()
    print("segmentation done")

    totoal_time = int(round(time.time() * 1000)) - before
    print("total time : %s minutes" % (totoal_time / 1000.0 / 60))
コード例 #3
0
def Segment():
    X1 = tf.placeholder(dtype=tf.float32,
                        shape=[None, 65, 65, 4],
                        name='big_patch')
    X2 = tf.placeholder(dtype=tf.float32,
                        shape=[None, 33, 33, 4],
                        name='small_patch')
    OUT = Network(X1, X2)
    patient = readindex()
    patient = np.array(patient)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    saver = tf.train.Saver()
    saver.restore(
        sess, 'E:/zhangjinjing/brain2D/brats2013/brain_session_2013_8.ckpt')
    for i in range(25):
        data = DataProcess(i)
        print('data shape:' + str(data.shape))
        OUTMHA = np.zeros([data.shape[0], data.shape[1], data.shape[2]])
        print('MHA:', OUTMHA.shape)
        index = Getcoord(data)
        print('index:', index.shape)
        n = 0
        while (n < index.shape[0] - 175):
            subindex = np.array(index[n:n + 175])
            print('sunindex:', subindex.shape)
            print('n:', n)
            x1, x2 = Getbatch(data, subindex)
            n = n + 175
            OUTLINE = sess.run(OUT, feed_dict={X1: x1, X2: x2})
            OUTLINE = np.array(OUTLINE)
            #print('OUTLINE:',OUTLINE.shape)
            for s in range(175):
                OUTMHA[subindex[s, 0], subindex[s, 1],
                       subindex[s, 2]] = np.argmax(OUTLINE, 1)[s]
                print('subindex:', subindex[s, 0], subindex[s, 1], subindex[s,
                                                                            2])
                print('max:', np.argmax(OUTLINE, 1)[s])
            print('finish!')
        util.save_nuarray_as_mha(
            'E://zhangjinjing/brain2D/2013test/VSD.Seg_HG_001.' +
            str(patient[i]) + '.mha', OUTMHA)
コード例 #4
0
ファイル: Patient.py プロジェクト: ml-lab/BRATS
    def preprocess(self):
        self.set_parent_file(self.file_parent)

        if (self._find_file("back_ground") == None):
            back_ground = self.BFS()
            utility.save_nuarray_as_mha(
                os.path.join(self.file_parent, "back_ground.mha"), back_ground)
            self.set_parent_file(self.file_parent)

        self.back_ground = utility.read_mha_image_as_nuarray(
            self._find_file("back_ground\.mha"))

        balanced_data_file = os.path.join(self.file_parent,
                                          "balanced_data.pickle")
        if (not os.path.isfile(balanced_data_file)):
            self.balance_data()

        ff = open(balanced_data_file, "rb")
        self.balanced_data_indices = pickle.load(ff)
        ff.close()
コード例 #5
0
    def preprocess(
        self
    ):  # creates a background.mha file ,which displays black brain part
        self.set_parent_file(self.file_parent)

        if (self._find_file("back_ground") == None):
            back_ground = self.BFS()
            utility.save_nuarray_as_mha(
                os.path.join(self.file_parent, "back_ground.mha"),
                back_ground)  #getting image from array
            self.set_parent_file(self.file_parent)

        self.back_ground = utility.read_mha_image_as_nuarray(
            self._find_file("back_ground\.mha"))  # getting array from img

        balanced_data_file = os.path.join(
            self.file_parent, "balanced_data.pickle")  #file pickling
        if (not os.path.isfile(balanced_data_file)):
            self.balance_data()

        ff = open(balanced_data_file, "rb")
        self.balanced_data_indices = pickle.load(ff)
        ff.close()
コード例 #6
0
import numpy as np
import utility as util

modi210=util.read_mha_image_as_nuarray('test210.mha')
temp=np.zeros([155,240,240])
temp[:,32:207,32:207]=modi210
util.save_nuarray_as_mha('test210_2.mha', temp)


コード例 #7
0
import scipy.io
import numpy as np
import utility as util
mat = scipy.io.loadmat('brain_1125.mat')
print(mat)
files = mat['img']
# file=mat['V']
y = np.zeros([files.shape[2], files.shape[1], files.shape[0]])
for i in range(files.shape[2]):
    x = files[:, :, i]
    for j in range(files.shape[1]):
        y[i, j] = x[:, j]
print(y.shape)
util.save_nuarray_as_mha('ktest.mha', y)
コード例 #8
0
import numpy as np
import os
import utility as util
seg="E://zhangjinjing/brain2D/test210.mha"
label="E://zhangjinjing/brain2D/BrainTrain/210/0005/0005.mha"
def compare(path1,path2):
    data1=util.read_mha_image_as_nuarray(path1)
    data2=util.read_mha_image_as_nuarray(path2)
    for i in range(data1.shape[0]):
        for j in range(data1.shape[1]):
            for k in range (data1.shape[2]):
                if data1[i,j,k]==data2[i,j,k]:
                    data1[i,j,k]=0
    return data1

if __name__=="__main__":
    data=compare(seg,label)
    util.save_nuarray_as_mha("E://zhangjinjing/brain2D/error.mha",data)
コード例 #9
0
#     print(OUTLINE.shape)
#     util.save_nuarray_as_mha('VSD.Seg_LG_011.'+str(dict[zip_num+85])+'.mha', OUTMHA)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
saver = tf.train.Saver()
saver.restore(
    sess,
    'E:/zhangjinjing/brain2D/brain_session_HLGG/brain_session_resize_8.ckpt')
print('read session ok')
iter = 0
OUTMHA = np.zeros([ALLtest.shape[0], ALLtest.shape[1], ALLtest.shape[2]])
for pos_x in range(ALLtest.shape[0]):
    for pos_y in range(ALLtest.shape[1] - patch_size):
        iter += 1
        print('\n', iter)
        print('finish in: ', iter * 700. / 189875., '%')
        #Input_batch1,Input_batch2,Label_batch=getBatch2D(pos_x,pos_y)
        Input_batch1, Input_batch2 = getBatch2D(pos_x, pos_y)
        #OUTLINE=sess.run([OUT],feed_dict={Xp1:Input_batch1,Xp2:Input_batch2,Yp:Label_batch})
        OUTLINE = sess.run([OUT],
                           feed_dict={
                               Xp1: Input_batch1,
                               Xp2: Input_batch2
                           })
        OUTLINE = np.array(OUTLINE)
        OUTMHA[pos_x, pos_y + halfpz,
               halfpz:175 + halfpz] = np.argmax(OUTLINE[0, :, :], 1)
util.save_nuarray_as_mha("test/8/VSD.Seg_HG_001.40767.mha", OUTMHA)
print(OUTLINE.shape)
コード例 #10
0
loss=tf.reduce_mean(-tf.reduce_sum(Yp*tf.log(OUT),reduction_indices=[1]))
correct_prediction = tf.equal(tf.argmax(OUT,1), tf.argmax(Yp,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess=tf.Session(config=config)
saver = tf.train.Saver()
saver.restore(sess,'E:/zhangjinjing/brain2D/brain_session_HLGG/brain_session_resize.ckpt')
print('read sessionOK')

iter=0

OUTMHA=np.zeros([ALLtest.shape[0],ALLtest.shape[1],ALLtest.shape[2]])
for pos_x in range(ALLtest.shape[0]):
    for pos_y in range(ALLtest.shape[1]-patch_size):
        iter+=1
        print('\n',iter)
        print('finish in: ',iter*700./189875.,'%')
        Input_batch1,Input_batch2,Label_batch=getBatch2D(pos_x,pos_y)
        #Input_batch1, Input_batch2 =getBatch2D(pos_x,pos_y)
        OUTLINE=sess.run([OUT],feed_dict={Xp1:Input_batch1,Xp2:Input_batch2,Yp:Label_batch})
        #OUTLINE=sess.run([OUT],feed_dict={Xp1:Input_batch1,Xp2:Input_batch2})
        OUTLINE=np.array(OUTLINE)
        # print(tf.Session().run(tf.arg_max(OUTLINE,1),feed_dict={Xp1:Input_batch1,Xp2:Input_batch2,Yp:Label_batch}))
        # print(tf.Session().run(tf.arg_max(Label_batch,1),feed_dict={Xp1:Input_batch1,Xp2:Input_batch2,Yp:Label_batch}))
        OUTMHA[pos_x,pos_y+halfpz,halfpz:175+halfpz]=np.argmax(OUTLINE[0,:,:],1)

print(OUTLINE.shape)
util.save_nuarray_as_mha('test40461_resize.mha', OUTMHA)
コード例 #11
0
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    saver = tf.train.Saver()
    saver.restore(
        sess, 'E:/zhangjinjing/brain2D/brain_session_HLGG/brain_session.ckpt')
    print('read sessionOK')
    iter = 0
    OUTMHA = np.zeros([ALLtest.shape[0], ALLtest.shape[1], ALLtest.shape[2]])
    for pos_x in range(ALLtest.shape[0]):
        for pos_y in range(ALLtest.shape[1] - patch_size):
            iter += 1
            print('\n', iter)
            print('finish in: ', iter * 700. / 189875., '%')
            #Input_batch1,Input_batch2,Label_batch=getBatch 2D(pos_x,pos_y)
            Input_batch1, Input_batch2 = getBatch2D(pos_x, pos_y)
            #OUTLINE=sess.run([OUT],feed_dict={Xp1:Input_batch1,Xp2:Input_batch2,Yp:Label_batch})

            OUTLINE = sess.run([OUT],
                               feed_dict={
                                   Xp1: Input_batch1,
                                   Xp2: Input_batch2
                               })
            OUTLINE = np.array(OUTLINE)
            # print(tf.Session().run(tf.arg_max(OUTLINE,1),feed_dict={Xp1:Input_batch1,Xp2:Input_batch2,Yp:Label_batch}))
            # print(tf.Session().run(tf.arg_max(Label_batch,1),feed_dict={Xp1:Input_batch1,Xp2:Input_batch2,Yp:Label_batch}))
            OUTMHA[pos_x, pos_y + halfpz,
                   halfpz:175 + halfpz] = np.argmax(OUTLINE[0, :, :], 1)

    print(OUTLINE.shape)
    util.save_nuarray_as_mha("VSD.Seg_HG_001." + index[zip_num] + ".mha",
                             OUTMHA)
コード例 #12
0
convout = tf.nn.conv2d(output,
                       weight_variable([21, 21, 224, 5]),
                       strides=[1, 1, 1, 1],
                       padding='VALID') + bias_variable([5])
convout = tf.reshape(convout, [175, 5])
OUT = tf.nn.softmax(convout)

OUTMHA = np.zeros([ALLTest.shape[0], ALLTest.shape[1], ALLTest.shape[2]])
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
saver = tf.train.Saver()
saver.restore(
    sess,
    'E:/zhangjinjing/brain2D/brain_session_HLGG/brain_session_resize2.ckpt')
print('read sessionOK')
iter = 1
for pos_x in range(ALLTest.shape[0]):
    for pos_y in range(ALLTest.shape[1] - patch_size):
        input_batch1, input_batch2 = get_2Dbatch(pos_x, pos_y)
        out = sess.run([OUT], feed_dict={XP1: input_batch1, XP2: input_batch2})
        out = np.array(out)
        Endpatch = half_patch + 175
        OUTMHA[pos_x, pos_y + half_patch,
               half_patch:Endpatch] = np.argmax(out[0, :, :], 1)
        print("inter=", iter / 26250)
        iter = iter + 1

print(out.shape)
util.save_nuarray_as_mha('VSD.Seg_HG_001.41163.mha', OUTMHA)