def split_func(split_id): # -------- choose a whole part ------------------ # each_split_sample_num = samples.shape[0] // split_num my_samples = samples[split_id * each_split_sample_num: (split_id + 1) * each_split_sample_num] my_labels = labels[split_id * each_split_sample_num: (split_id + 1) * each_split_sample_num] utility.save_to_file(save_prefix + str(split_id) + ".file", my_samples, my_labels)
def generate_datas(args): counts = args.iter_num // 10 total_samples, total_labels = None, None for _ in range(counts): random_samples, random_labels = utility.generate_random_samples( num_of_samples=args.global_batch_size * 10, vocabulary_size=args.vocabulary_size, slot_num=args.slot_num, max_nnz=args.nnz_per_slot, use_sparse_mask=False) if total_samples is None: total_samples = random_samples total_labels = random_labels else: total_samples = np.concatenate([total_samples, random_samples], axis=0) total_labels = np.concatenate([total_labels, random_labels], axis=0) utility.save_to_file(args.filename, total_samples, total_labels)
'block_coords': (block_x, block_y), 'key': zigzag[i], 'val': transform[zigzag[i]] }) return result if __name__ == '__main__': if len(sys.argv) == 1: root_dir = util.safeGetDirectory() all_files = [f for f in listdir(root_dir) if path.isfile(path.join(root_dir, f))] input_file = util.getVideoFile(all_files) n = util.getConstant('n') filename = path.join(root_dir, input_file) elif len(sys.argv) == 3: filename = path.realpath(sys.argv[2]) n = int(sys.argv[1]) else: print 'Usage: python block_dct.py 6 ../path/to/file.mp4' exit() # Read the video data video = cv2.VideoCapture(filename) frame_data = util.getContent(video) # Calculate the significant components significant_components = FindDiscreteCosineTransform(frame_data, n) # Write the data to the file output_filename = filename.replace('.mp4', '_blockdct_' + str(n) + '.bct') util.save_to_file(significant_components, output_filename)
''' if __name__ == '__main__': if len(sys.argv) == 1: root_dir = util.safeGetDirectory() all_files = [f for f in listdir(root_dir) if path.isfile(path.join(root_dir, f))] input_file = util.getVideoFile(all_files) n = util.getConstant('n') filename = path.join(root_dir, input_file) elif len(sys.argv) == 3: filename = path.realpath(sys.argv[2]) n = int(sys.argv[1]) else: print 'Usage: python block_quantize.py 6 ../path/to/file.mp4' exit() # Read video data video = cv2.VideoCapture(filename) frame_data = util.getContent(video) # Quantize the blocks of the video quantized_values, frame_block_list = quantize(frame_data, n) # Write the data to the file output_filename = filename.replace('.mp4', '_hist_' + str(n) + '.hst') util.save_to_file(quantized_values, output_filename) # Display histogram of quantized regions image_filename = output_filename.replace('.hst', '.png') display_histogram(quantized_values, n, image_filename=image_filename)
''' Main Method Given a video file `video_filename.mp4` and an `m` value, will output a text file video_filename_blockdwt_n.bwt in the same directory. Pass the parameters in via command line parameters. ''' if __name__ == '__main__': if len(sys.argv) == 1: root_dir = util.safeGetDirectory() all_files = [f for f in listdir(root_dir) if path.isfile(path.join(root_dir, f))] input_file = util.getVideoFile(all_files) m = util.getConstant('m') filename = path.join(root_dir, input_file) elif len(sys.argv) == 3: filename = path.realpath(sys.argv[2]) m = int(sys.argv[1]) else: print 'Usage: python frame_dwt.py 6 ../path/to/file.mp4' exit() # Read the video data video = cv2.VideoCapture(filename) frame_data = util.getContent(video) # Calculate the wavelet components of each frameblock significant_wavelets = video_framedwt(frame_data, m) # Write the data to the file output_filename = filename.replace('.mp4', '_framedwt_' + str(m) + '.fwt') util.save_to_file(significant_wavelets, output_filename)