コード例 #1
0
 def calc_error(self, data, follow_theta=False):
     if self._style == LayerTypes.OUTPUT:
         self._delta = self._nodes - data
     else:
         self._delta = np.multiply(
             data * np.transpose(follow_theta)[:, 1:],
             np.multiply(sigmoid(self._z_val), 1 - sigmoid(self._z_val)))
def indexed_weighted_logistic_regression(x_train,
                                         x_test,
                                         y_train,
                                         y_test,
                                         num_iter=10000,
                                         Regulization_lamda=0.0001,
                                         lr=0.001,
                                         weight_Sigma=0.8):
    weights = Calculate_logistic_weights(x_train, x_test, weight_Sigma)
    weights = np.identity(weights.shape[0]) * weights
    #weights=np.reshape(weights,(weights.shape[0],1))

    theta = np.reshape(np.zeros(x_train.shape[1]), (x_train.shape[1], 1))
    for i in range(num_iter):
        z = np.dot(x_train, theta)
        h = sigmoid(z)
        h = np.reshape(h, (h.shape[0], 1))
        #print(x_train.shape)
        #print(weights.shape)
        X = np.matmul(weights, x_train)
        gradient = -np.dot(X.T, (h - y_train)) + (theta) * Regulization_lamda
        #gradient = -np.dot(np.matmul(weights,x_train).T, (h - y_train)) + (theta) * Regulization_lamda
        theta = theta + lr * gradient
    y_pred = sigmoid(np.dot(x_test.T, theta))
    #print(abs(y_test - y_pred),end='#############################\n')
    return y_pred
コード例 #3
0
def reconstruction_likelihood(net, t_image = 0.250):
    spikes = np.zeros((len(x), n_outputs))

    pi = ut.sigmoid(net._V)

    likelihoods =[]

    estimation_net = deepcopy(net)
    estimation_net._current_time = 0
    estimation_net._trace = deque([])

    pbar = tqdm(total=len(x) * t_image, unit='Time [s]', position=1, desc="Reconstruction")
    while estimation_net._current_time < len(x) * t_image:
        pbar.n = int(estimation_net._current_time * 1000) / 1000
        pbar.update(0)

        z = estimation_net.step(lambda t: x[int(min(t, (len(x)-1) * t_image) / t_image)], update_weights=False)

        sample = x[int(min(estimation_net._current_time, (len(x)-1) * t_image) / t_image)]
        pi = ut.sigmoid(np.dot(z.reshape((1, -1)), net._V))
        likelihoods.append(np.sum(np.log(sample * pi + (1 - sample) * (1 - pi)), axis=-1))

    pbar.close()

    return np.mean(likelihoods)
コード例 #4
0
    def forward_prop(self, inputs):
        """ Calculate output from given inputs through the neural network """
        layers = [inputs]
        for i in range(len(self.h_layers)+1):
            # Calculate the input * weights + bias
            z = np.dot(layers[i], self.weights[i]) + self.biases[i]

            # Apply activation function
            out = []
            if d.sensor_mode:
                # Outputs are numbers
                for j in range(len(z)):
                    o = sigmoid(clamp(-20, 20, z[j]))
                    out.append(o)
            else:
                # Output are vectors
                for j in range(len(z)):
                    sigm_x = sigmoid(clamp(-20, 20, z[j].x))
                    sigm_y = sigmoid(clamp(-20, 20, z[j].y))
                    out.append(Vector2(sigm_x, sigm_y))

            layers.append(out)

        # Return the output
        final_output = layers[len(layers)-1][0]     # Last layer only has 1 output neuron
        return final_output
        
def logistic_regression(x_train,
                        x_test,
                        y_train,
                        y_test,
                        num_iter=10000,
                        Regulization_lamda=0.0001,
                        lr=0.001):
    theta = np.reshape(np.zeros(x_train.shape[1]), (x_train.shape[1], 1))

    for i in range(num_iter):
        z = np.dot(x_train, theta)
        h = sigmoid(z)
        h = np.reshape(h, (h.shape[0], 1))
        gradient = -np.dot(x_train.T,
                           (h - y_train)) + (theta) * Regulization_lamda
        #gradient = -np.dot(X.T, (h - y))
        theta = theta + lr * gradient

    z = np.dot(x_test, theta)
    h = sigmoid(z)
    h = np.reshape(h, (h.shape[0], 1))
    acc = 0
    for i in range(len(y_test)):
        if ((h[i] > 0.5 and y_test[i] == 1)
                or (h[i] < 0.5 and y_test[i] == 0)):
            acc += 1
    acc = acc / y_test.shape[0]
    #print("simple Accurecy : "+str(acc))
    return 100 * acc
コード例 #6
0
ファイル: rbm.py プロジェクト: hamalab-test/t.nishisaki
 def reconstruct_from_input(self, input):
     output = numpy.dot(input, self.W.T) + self.hbias
     hidden_possible = sigmoid(output)
     input_after = numpy.dot(hidden_possible, self.W) + self.vbias
     input_possible = sigmoid(input_after)
     assert input.shape == input_possible.shape
     return input_possible
コード例 #7
0
ファイル: rbm.py プロジェクト: hamalab-test/t.nishisaki
    def contrast_divergence_binomial(self, epoch):
        dw = numpy.zeros((self.output_size, self.input_size))
        # dvb = numpy.zeros(self.input_size)
        # dhb = numpy.zeros(self.output_size)

        output = numpy.dot(self.input, self.W.T) + self.hbias
        hidden_possible = sigmoid(output)
        hidden_state = numpy_rng.binomial(n=1, p=hidden_possible)

        dw += self.learning_rate * numpy.dot(hidden_state.T, self.input)
        # dvb += self.learning_rate * numpy.mean(self.input, axis=0)
        # dhb += self.learning_rate * numpy.mean(hidden_possible, axis=0)

        visible_output = numpy.dot(hidden_state, self.W) + self.vbias
        visible_possible = sigmoid(visible_output)
        visible_state = numpy_rng.binomial(n=1, p=visible_possible)

        hidden_output = numpy.dot(visible_state, self.W.T) + self.hbias
        hidden_possible_after = sigmoid(hidden_output)

        dw -= self.learning_rate * numpy.dot(hidden_possible_after.T, visible_state)
        # dvb -= self.learning_rate * numpy.mean(visible_state, axis=0)
        # dhb -= self.learning_rate * numpy.mean(hidden_possible_after, axis=0)

        ####################
        # parameter update
        ####################
        self.W += dw / self.data_size
コード例 #8
0
ファイル: rbm.py プロジェクト: hamalab-test/t.nishisaki
    def get_reconstruction_cross_entropy(self):
        pre_sigmoid_activation_h = numpy.dot(self.input, self.W.T) + self.hbias
        sigmoid_activation_h = sigmoid(pre_sigmoid_activation_h)

        pre_sigmoid_activation_v = numpy.dot(sigmoid_activation_h, self.W) + self.vbias
        sigmoid_activation_v = sigmoid(pre_sigmoid_activation_v)

        cross_entropy =  - numpy.mean(
            numpy.sum(self.input * numpy.log(sigmoid_activation_v) +
            (1 - self.input) * numpy.log(1 - sigmoid_activation_v),
                      axis=1))
        
        return cross_entropy
コード例 #9
0
ファイル: forwardmodels.py プロジェクト: polceanum/NPDAG
    def predict(self, DAG, predictors):        
        if not isinstance(predictors, dict):
            predictors = util.array2dict(predictors)
        
        Z = DAG.get_latent_nodes()
        Y = DAG.get_response_nodes()
        X = DAG.get_input_nodes()
        
        non_input_nodes = Z.union(Y)
        non_input_nodes_by_rep = sorted(non_input_nodes, key=DAG.get_reputation, reverse=True)
        
        x = next(iter(X))
        n = len(predictors[x])
        
        node_values = dict()
        
        for node in non_input_nodes_by_rep:
            if node in DAG.parents:
                parents = DAG.parents[node]
                weighted_parent_values = np.zeros((len(parents), n)) 
                for ix, parent in enumerate(parents):
                    if parent in X:
                        parvals = predictors[parent]
                    else:
                        parvals = node_values[parent]
                    w = DAG.get_weight(parent, node)
                    weighted_parent_values[ix, :] += self.boolean_NOT(parvals, w)
                node_values[node] = self.boolean_MEDIAN(weighted_parent_values)
            else: 
                node_values[node] = np.zeros((n))
                      
        y = next(iter(Y))
        
        parents_y = DAG.parents[y]
        
        parent_y_values = np.zeros((len(parents_y), n))
        for ix, i in enumerate(parents_y):
            w = DAG.get_weight(i, y)
            if i in X:
                parent_y_values[ix, :] = self.boolean_NOT(predictors[i], w)
            elif i in Z:
                parent_y_values[ix, :] = self.boolean_NOT(node_values[i], w)
        

        if parents_y == 1:
            theta = util.sigmoid(2*parent_y_values-1, gain=self.gain)
        else:            
            theta = util.sigmoid(2*np.mean(parent_y_values, axis=0)-1, gain=self.gain)
        
        response = 1*(np.random.rand(n) < theta) 
        return response
コード例 #10
0
ファイル: forwardmodels.py プロジェクト: polceanum/NPDAG
 def log_likelihood(self, DAG, predictors, response, epsilon=1e-3):        
     if not isinstance(predictors, dict):
         predictors = util.array2dict(predictors)
         
     X = DAG.get_input_nodes()
     Z = DAG.get_latent_nodes()
     Y = DAG.get_response_nodes()
     
     zvalues = dict()
     # We assume only 1 response node
     y = next(iter(Y))
     
     n = len(response)
     
     # highest reputation first
     Z_by_rep = sorted(Z, key=DAG.get_reputation, reverse=True)    
     
     for z in Z_by_rep:            
         if not z in DAG.parents:
             zvalues[z] = np.zeros(shape=(n,))
         else:
             parents = DAG.parents[z]
             parent_values = np.zeros((len(parents), n))
             for ix, i in enumerate(parents):
                 w = DAG.get_weight(i, z)
                 if i in X:
                     parent_values[ix, :] = self.boolean_NOT(predictors[i], w)
                 else:
                     parent_values[ix, :] = self.boolean_NOT(zvalues[i], w)
             
             parent_values = np.array(parent_values)                
             zvalue = self.boolean_MEDIAN(parent_values)
             zvalues[z] = zvalue
     
     parents_y = DAG.parents[y]
     
     parent_y_values = np.zeros((len(parents_y), n))
     for ix, i in enumerate(parents_y):
         w = DAG.get_weight(i, y)
         if i in X:
             parent_y_values[ix, :] = self.boolean_NOT(predictors[i], w)
         elif i in Z:
             parent_y_values[ix, :] = self.boolean_NOT(zvalues[i], w)
     
     if parents_y == 1:
         theta = util.sigmoid(2*parent_y_values-1, gain=self.gain)
     else:
         theta = util.sigmoid(2*np.mean(parent_y_values, axis=0)-1, gain=self.gain)
     L = np.sum(response*np.log(theta) + (1 - response)*np.log(1 - theta))
     return L
コード例 #11
0
def get_accuracy(x, y, theta):
    length = len(x)
    correct = 0
    for i in range(length):
        prediction = 1 if sigmoid(x[i].dot(theta)) >= 0.5 else 0
        correct = correct + 1 if y[i] == prediction else correct
    return (correct / length) * 100
コード例 #12
0
    def step(self, inputs):
        inputs = inputs.reshape((-1, 1))
        assert len(inputs) == self._n_inputs, "Input length does not match"

        # u = V * input + b
        u = np.dot(self._V, inputs) + self._b

        z = np.zeros((self._n_outputs, 1))

        # find out if network is spiking
        if np.random.uniform(0, 1, 1) < self._delta_t * self._r_net:
            # p = softmax(u)
            p_z = np.exp(u) / np.sum(np.exp(u) + 1e-8)

            # sample from softmax distribution
            sum_p_z = np.cumsum(p_z)
            diff = sum_p_z - np.random.uniform(0, 1, 1) > 0
            k = np.argmax(diff)

            z[k] = 1.0

        self._b += self._delta_t * self._eta_b * (
            self._delta_t * self._r_net * self._m_k - ut.dirac(z - 1))
        self._V += self._delta_t * self._eta_v * ut.dirac(z - 1) * (
            inputs.T - ut.sigmoid(self._V))

        return z
コード例 #13
0
    def predict(self, X, Y):
        m = X.shape[-1]

        Z = np.dot(self.w, X) + self.b
        A = sigmoid(Z)

        self.Y_p = (A > 0.5)
        correct = (self.Y_p == Y)
        self.accuracy = np.sum(correct) / m
        return self.accuracy
コード例 #14
0
def linear_forward_block(a_prev, w, b, activation):
    h = np.dot(w, a_prev) + b
    if activation == 'sigmoid':
        a = sigmoid(h)
    else:
        a = tanh(h)

    cache = {'a_prev': a_prev, 'w': w, 'b': b}

    return a, cache
 def predict(self, x):
     """ 
         Predicts value for a given datapoint x.
         variables: 
             t - datapoint for which a value gets predicted by the model
     """
     x = np.insert(x, 0, 1)
     prob = sigmoid(x.dot(self.theta))
     if self.verbose:
         print(f'Prediction for {x[1:]} is: {100*prob:.1f}%')
     return prob
コード例 #16
0
def compute_cost(X, Y, w, b, lambd, regularized):
    m = Y.shape[-1]
    Z = np.dot(w, X) + b
    A = sigmoid(Z)
    cost =  - np.sum(Y * np.log(A) + (1-Y) * np.log(1-A)) / m

    if regularized == 1:
            cost += lambd * np.linalg.norm(w, 1) / m
    elif regularized == 2:
            cost += lambd * np.linalg.norm(w, 2) / m

    return cost
コード例 #17
0
 def forward_prop(self, inputs):
     layers = [inputs]
     for i in range(len(self.h_layers) + 1):
         # Calculate the input * weights + bias
         z = sum_matrix_float(np.dot(layers[i], self.weights[i]),
                              self.biases[i])
         # Apply activation function
         o = [sigmoid(clamp(-20, 20, z[j])) for j in range(len(z))]
         layers.append(o)
     # Return the output
     final_output = layers[len(layers) - 1][0]
     return final_output
コード例 #18
0
def reconstruct(net, input, t_image=0.250):
    estimation_net = deepcopy(net)
    estimation_net._current_time = 0
    estimation_net._trace = deque([])

    reconstruction = np.zeros_like(input)
    while estimation_net._current_time < t_image:
        z = estimation_net.step(lambda t: input, update_weights=False)

        reconstruction += z.dot(ut.sigmoid(net._V))

    return reconstruction
    def costFun(self, theta):
        """
                Returns objective value for measuring fitness of model.
                variables: 
                    theta   - current model parameters
        """
        if self.verbose:
            print("Iter: {} | theta: {}".format(self.iter, theta))
        J = 0
        m = len(self.y)
        # Using np.finfo(float).eps to avoid dividing by zero errors/warnings
        cost = -self.y * np.log(
            sigmoid(self.X.dot(theta)) + np.finfo(float).eps) - (np.ones([
                m,
            ]) - self.y) * np.log(1 - sigmoid(self.X.dot(theta)) +
                                  np.finfo(float).eps)
        J = 1 / m * sum(cost)

        self.costHist.append(J)
        self.theta = theta
        self.iter += 1
        return J
コード例 #20
0
    def compute_dd_loss(self, fst, snd, third):
        x = self.predict_score(fst, snd, "dd") - \
            self.predict_score(fst, third, "dd")
        ranking_loss = -np.log(sigmoid(x))

        complexity = 0.0
        complexity += self.matrix_reg * np.dot(self.paper_latent_matrix[fst],
                                               self.paper_latent_matrix[fst])
        complexity += self.matrix_reg * np.dot(self.paper_latent_matrix[snd],
                                               self.paper_latent_matrix[snd])
        complexity += self.matrix_reg * np.dot(self.paper_latent_matrix[third],
                                               self.paper_latent_matrix[third])
        return ranking_loss + complexity
コード例 #21
0
    def generate_R_PR(self):
        self.Pr = np.zeros((self.num_user, self.num_item))
        self.R = np.zeros((self.num_user, self.num_item))
        rel_list = []
        exp_list = []
        for m in range(self.C):
            P, Q, c, d, a, b, e, f = self.sess.run([
                self.P_list[m], self.Q_list[m], self.c_list[m], self.d_list[m],
                self.a_list[m], self.b_list[m], self.e_list[m], self.f_list[m]
            ])

            rel = np.matmul(P, Q.T)
            rel = np.exp(rel)
            rel /= np.sum(rel, axis=1, keepdims=True)
            rel *= (self.num_item / 2.)

            w = utility.sigmoid(np.matmul(Q, a) + b)
            pop = np.power(w * utility.sigmoid(np.matmul(Q, c) + d) \
                           + (1 - w) * self.item_pop, utility.sigmoid(np.matmul(Q, e) + f))
            exp = np.zeros((self.num_user, self.num_item)) + pop.T

            user_ids = self.df_list[m]['userId']
            item_ids = self.df_list[m]['itemId']
            rel_list.append(rel[user_ids, item_ids])
            exp_list.append(exp[user_ids, item_ids])

            self.R += rel
            self.Pr += exp
        self.R /= self.C
        self.Pr /= self.C
        for m in range(self.C):
            user_ids = self.df_list[m]['userId']
            item_ids = self.df_list[m]['itemId']
            self.R[user_ids, item_ids] = rel_list[m]
            self.Pr[user_ids, item_ids] = exp_list[m]

        self.Pr[np.where(self.Pr < 0.01)] = 0.01
        self.Pr[np.where(self.Pr > 0.99)] = 0.99
    def costFunGrad(self, theta):
        """
                Returns gradient of the objective.
                variables: 
                    theta   - current model parameters
        """
        Grad = np.zeros(theta.shape)
        m = len(self.y)

        for i in range(len(theta)):
            Grad[i] = 1 / m * sum(
                (sigmoid(self.X.dot(theta)) - self.y) * self.X[:, i])

        return Grad
コード例 #23
0
    def step(self, data_generator_fn, update_weights=True):
        # sample  isi
        isi = -np.log(np.random.uniform()) / self._r_net

        new_time = self._current_time + isi

        # now go back from T + isi - tau to T + isi, calculate input data
        # calculate the activations
        # update the weights

        time_start = max(0, new_time - 2 * self._tau)

        total_inputs = data_generator_fn(new_time).reshape((-1, 1))
        for time in np.arange(time_start, new_time, self._delta_t):
            inputs = data_generator_fn(time)
            inputs = inputs.reshape((-1, 1))
            inputs *= np.exp(-(new_time - time) / self._tau)
            assert len(inputs) == self._n_inputs, "Input length does not match"
            total_inputs += inputs

        # u = V * input + b
        u = np.dot(self._V, inputs) + self._b

        z = np.zeros((self._n_outputs, 1))

        # p = softmax(u)
        p_z = np.exp(u) / np.sum(np.exp(u) + 1e-8)

        # sample from softmax distribution
        sum_p_z = np.cumsum(p_z)
        diff = sum_p_z - np.random.uniform(0, 1, 1) > 0
        k = np.argmax(diff)

        z[k] = 1.0

        if update_weights:
            self._b += self._eta_b * (isi * self._r_net * self._m_k -
                                      ut.dirac(z - 1))
            self._V += self._eta_v * ut.dirac(z - 1) * (inputs.T -
                                                        ut.sigmoid(self._V))

        self._current_time += isi

        self._trace.append(
            (self._current_time, inputs, z, u, self._V, self._b))

        if len(self._trace) > self._max_trace_length:
            self._trace.pop()

        return z
コード例 #24
0
    def compute_output(self):
        """
        Returns the output of this Neuron node, using a sigmoid as
        the threshold function.

        returns: number (float or int)
        """
        inputs_, weights_ = np.array([
            x.output() for x in self.my_inputs
        ]), np.array([x.my_value for x in self.my_weights])
        # print(inputs_)
        # print(weights_)
        out = sigmoid(np.sum(inputs_ * weights_))
        return out
        raise NotImplementedError("Implement me!")
コード例 #25
0
    def compute_pp_loss(self, fst, snd, third):
        """
        loss includes ranking loss and model complexity
        """
        x = self.predict_score(fst, snd, "pp") - \
             self.predict_score(fst, third, "pp")
        ranking_loss = -np.log(sigmoid(x))

        complexity = 0.0
        complexity += self.matrix_reg * np.dot(self.author_latent_matrix[fst],
                                               self.author_latent_matrix[fst])
        complexity += self.matrix_reg * np.dot(self.author_latent_matrix[snd],
                                               self.author_latent_matrix[snd])
        complexity += self.matrix_reg * np.dot(
            self.author_latent_matrix[third], self.author_latent_matrix[third])
        return ranking_loss + complexity
    def accuracy(self, threshold=0.5):
        """ 
            Computes the accuracy of the trained model for the training set.
            variables: 
                threshold - threshold for accepting a value as 1
        """
        p = np.zeros([
            len(self.y),
        ])
        for i in range(len(self.y)):
            if sigmoid(self.X[i].dot(self.theta)) >= threshold:
                p[i] = 1
            else:
                p[i] = 0

        self.acc = np.mean(p == self.y) * 100
コード例 #27
0
def logistic_propagate(X, Y, w, b, lambd, regularized):
    m = Y.shape[-1]
    Z = np.dot(w, X) + b
    A = sigmoid(Z)

    cost = compute_cost(X, Y, w, b, lambd, regularized)

    dw = np.dot((A - Y), X.T) / m
    db = np.sum((A - Y), axis=1, keepdims=True) / m

    if regularized == 2:
        dw += 2 * lambd * w / m
    elif regularized == 1:
        dw += lambd * np.sign(w) / m

    grad = {'dw':dw, 'db':db}

    return grad, cost
コード例 #28
0
def reconstruction_l2_loss(net, t_image=0.250):
    estimation_net = deepcopy(net)
    estimation_net._current_time = 0
    estimation_net._trace = deque([])

    spikes = np.zeros((len(x), n_outputs))
    pbar = tqdm(total=len(x) * t_image, unit='Time [s]', position=1, desc="Reconstruction")
    while estimation_net._current_time < len(x) * t_image:
        pbar.n = int(estimation_net._current_time * 1000) / 1000
        pbar.update(0)

        z = estimation_net.step(lambda t: x[int(min(t, (len(x) - 1) * t_image) / t_image)], update_weights=False)
        spikes[min(len(x)-1, int(estimation_net._current_time / t_image))] += z.flatten()

    reconstructions = np.dot(spikes, ut.sigmoid(estimation_net._V)) / np.sum(spikes, axis=-1).reshape(-1, 1)
    difference = np.mean((reconstructions - x) ** 2)

    return difference
コード例 #29
0
    def update_dd_gradient(self, fst, snd, third):
        x = self.predict_score(fst, snd, "dd") - \
            self.predict_score(fst, third, "dd")
        common_term = sigmoid(x) - 1

        grad_fst = common_term * (self.paper_latent_matrix[snd] - \
                                  self.paper_latent_matrix[third]) + \
                   2 * self.matrix_reg * self.paper_latent_matrix[fst]
        self.paper_latent_matrix[fst] = self.paper_latent_matrix[fst] - \
                                         self.alpha * grad_fst

        grad_snd = common_term * self.paper_latent_matrix[fst] + \
                   2 * self.matrix_reg * self.paper_latent_matrix[snd]
        self.paper_latent_matrix[snd]= self.paper_latent_matrix[snd] - \
                                       self.alpha * grad_snd

        grad_third = -common_term * self.paper_latent_matrix[fst] + \
                     2 * self.matrix_reg * self.paper_latent_matrix[third]
        self.paper_latent_matrix[third] = self.paper_latent_matrix[third] - \
                                          self.alpha * grad_third
コード例 #30
0
def estimate_likelihood(estimation_duration=10.0):
    log_likelihoods = deque([])

    estimation_net = deepcopy(net)
    estimation_net._current_time = 0
    estimation_net._trace = deque([])

    while estimation_net._current_time < estimation_duration:
        estimation_net.step(lambda t: data_generator[t], update_weights=False)

        pbar.n = int(net._current_time * 1000) / 1000
        pbar.update(0)

        # log likelihood
        y = estimation_net._trace[-1][1].reshape((1, -1))

        pi = ut.sigmoid(net._V)
        log_likelihoods.append(
            np.log(1.0 / n_outputs) + np.log(np.sum(np.prod(y * pi + (1 - y) * (1 - pi), axis=-1))))

    return np.mean(log_likelihoods), np.std(log_likelihoods)
コード例 #31
0
    def __init__(self, weights):
        self._fig = plt.figure(figsize=(3.5, 1.16), dpi=300)
        i = 2
        num_weights = len(weights)
        while i < len(weights):
            if num_weights % i == 0:
                break
            else:
                i += 1

        axes = add_axes_as_grid(self._fig,
                                i,
                                int(num_weights / i),
                                m_xc=0.01,
                                m_yc=0.01)

        self._weight_shape = weights.shape[1:]

        self._imshows = []
        for i, ax in enumerate(list(axes.flatten())):
            # disable legends
            ax.set_yticks([])
            ax.set_xticks([])
            ax.spines['top'].set_visible(False)
            ax.spines['right'].set_visible(False)
            ax.spines['left'].set_visible(False)
            ax.spines['bottom'].set_visible(False)

            if i >= len(weights):
                self._imshows.append(
                    ax.imshow(np.zeros(self._weight_shape), vmin=0, vmax=1))
            else:
                self._imshows.append(
                    ax.imshow(ut.sigmoid(weights[i].reshape(
                        self._weight_shape)),
                              vmin=0,
                              vmax=1))
        plt.show(block=False)
        self._fig.canvas.draw()
        self._fig.canvas.flush_events()
コード例 #32
0
def reconstruction(nets, Xs, t_image=0.250):
    reconstructions = np.zeros_like(x)

    w = W // Xs.shape[0]
    h = H // Xs.shape[0]

    for n in range(Xs.shape[0]):
        for m in range(Xs.shape[1]):
            net = nets[n][m]

            estimation_net = deepcopy(net)
            estimation_net._current_time = 0
            estimation_net._trace = deque([])

            data = Xs[n][m]

            spikes = np.zeros((len(data), n_outputs))
            pbar = tqdm(total=len(data) * t_image,
                        unit='Time [s]',
                        position=1,
                        desc="Reconstruction")
            while estimation_net._current_time < len(X) * t_image:
                pbar.n = int(estimation_net._current_time * 1000) / 1000
                pbar.update(0)

                z = estimation_net.step(lambda t: data[int(
                    min(t, (len(x) - 1) * t_image) / t_image)],
                                        update_weights=False)
                spikes[min(
                    len(data) - 1, int(estimation_net._current_time /
                                       t_image))] += z.flatten()

            reconstructions[:, n*h:(n+1)*h, m*w:(m+1)*w] =\
                (
                        np.dot(spikes, ut.sigmoid(estimation_net._V)) / np.sum(spikes, axis=-1).reshape(-1, 1)
                ).reshape(-1, h, w)

        return reconstructions
コード例 #33
0
    def step(self, data_generator_fn, update_weights=True):
        # sample  isi
        isi = -np.log(np.random.uniform()) / self._r_net

        inputs = data_generator_fn(self._current_time + isi)
        inputs = inputs.reshape((-1, 1))
        assert len(inputs) == self._n_inputs, "Input length does not match"

        # u = V * input + b
        u = np.dot(self._V, inputs) + self._b

        z = np.zeros((self._n_outputs, 1))

        # p = softmax(u)
        p_z = np.exp(u) / np.sum(np.exp(u))

        # sample from softmax distribution
        sum_p_z = np.cumsum(p_z)
        diff = sum_p_z - np.random.uniform(0, 1, 1) > 0
        k = np.argmax(diff)

        z[k] = 1.0

        if update_weights:
            self._b += self._eta_b * (isi * self._r_net * self._m_k -
                                      ut.dirac(z - 1))
            self._V += self._eta_v * ut.dirac(z - 1) * (inputs.T -
                                                        ut.sigmoid(self._V))

        self._current_time += isi

        self._trace.append(
            (self._current_time, inputs, z, u, self._V, self._b))

        if len(self._trace) > self._max_trace_length:
            self._trace.pop()

        return z
コード例 #34
0
ファイル: cnn.py プロジェクト: hamalab-test/t.nishisaki
    def output(self):
        output_rgblist = []
        # print self.input.shape

        if self.isRGB:
            for i_rgb in xrange(3):
                output_list = []
                data_input = self.input[i_rgb]

                for i in xrange(data_input.shape[0]):
                    if i % 100 == 0:
                        print 'output image:' + str(i), data_input.shape[0]
                    output_row = []

                    input_vector = data_input[i]

                    # print 'cnn output check!!'
                    # print input_vector.shape

                    # 入力データの1次元ベクトルを2次元に直す
                    input = []
                    for j in xrange(self.prev_shape[1]):
                        # j 0~51
                        input.append(input_vector[j*self.prev_shape[0]: (j+1)*self.prev_shape[0]])

                    input = numpy.array(input)

                    for y in xrange(self.post_shape[1]):
                        for x in xrange(self.post_shape[0]):
                            # x 0~73    74
                            # y 0~51    46
                            # input [52,80]

                            input_dot = input[y*self.filter_shift[0]:y*self.filter_shift[0]+self.filter_shape[1],
                                              x*self.filter_shift[1]:x*self.filter_shift[1]+self.filter_shape[0]]

                            now_W = self.W
                            # if i_rgb == 0:
                            #     now_W = self.WR
                            # if i_rgb == 1:
                            #     now_W = self.WG
                            # if i_rgb == 2:
                            #     now_W = self.WB

                            output = [a*b for (a, b) in zip(input_dot, now_W)]
                            output = numpy.array(output)
                            output = output.sum() + self.bias
                            output_possible = sigmoid(output)

                            output_row.append(output_possible)

                    output_list.append(output_row)

                output_rgblist.append(output_list)
                # return numpy.array(output_list)
            return numpy.array(output_rgblist)

        else:
            for i in xrange(self.input.shape[0]):
                print 'output image:' + str(i)
                output_row = []

                input_vector = self.input[i]

                # 入力データの1次元ベクトルを2次元に直す
                input = []
                for j in xrange(self.prev_shape[1]):
                    # j 0~51
                    input.append(input_vector[j*self.prev_shape[0]: (j+1)*self.prev_shape[0]])

                input = numpy.array(input)

                for y in xrange(self.post_shape[1]):
                    for x in xrange(self.post_shape[0]):
                        # x 0~73	74
                        # y 0~51	46
                        # input [52,80]

                        # print input.shape
                        # print x,y
                        # print self.post_shape

                        input_dot = input[y*self.filter_shift[0]:y*self.filter_shift[0]+self.filter_shape[1],
                                          x*self.filter_shift[1]:x*self.filter_shift[1]+self.filter_shape[0]]

                        output = [a*b for (a, b) in zip(input_dot, self.W)]
                        output = numpy.array(output)
                        output = output.sum() + self.bias
                        output_possible = sigmoid(output)

                        output_row.append(output_possible)

                # [Height, Width] を [Width, Height]に変換する???不要?
                # output_mat = []
                # for x in xrange(self.post_shape[0]):
                # 	# output_mat_vec = []
                # 	for y in xrange(self.post_shape[1]):
                # 		# print x,y
                # 		index = y*self.post_shape[1] + x
                # 		# print index
                # 		output_mat.append(output_row[index])

                output_list.append(output_row)
                # output_list.append(output_mat)

            return numpy.array(output_list)
コード例 #35
0
ファイル: rtrbm.py プロジェクト: hamalab-test/t.nishisaki
    def output_hr(self):
        h_list = []
        r_list = []

        for i in xrange(self.data_size):
        # for i in xrange(4):
        #     input = []
        #     if i is 0:
        #         input = self.input_v[0]
        #     elif i is 1:
        #         input = self.input_v[19]
        #     elif i is 2:
        #         input = self.input_v[39]
        #     elif i is 3:
        #         input = self.input_v[19]

            input = self.input_v[i]

            # r = 0
            # if i == 0:
            #     r = numpy.dot(input, self.W.T) + self.hbias
            # else:
            #     r = numpy.dot(input, self.W.T) + self.hbias + numpy.dot(r_list[i-1], self.U.T)

            if i == 0:
                r = numpy.dot(input, self.W.T) + self.hbias
                h = numpy.dot(input, self.W.T) + self.hbias

                r = (r - numpy.min(r)) / numpy.max(r - numpy.min(r)) * 6 - 3
                h = (h - numpy.min(h)) / numpy.max(h - numpy.min(h)) * 6 - 3

                # print numpy.max(h)
                # print numpy.min(h)
            else:
                # print 'feature_check!!!!'
                # print 'r_list[i-1]'
                # print r_list[i-1]
                # print 'self.U.T'
                # print self.U.T

                # print 'r_list[i-1]'
                # print r_list[i-1]
                # print 'self.U.T'
                # print self.U.T

                tmp_v = numpy.dot(input, self.W.T)
                tmp_r = numpy.dot(r_list[i-1], self.U.T)

                tmp_v = (tmp_v - numpy.min(tmp_v)) / numpy.max(tmp_v - numpy.min(tmp_v)) * 6 - 3
                tmp_r = (tmp_r - numpy.min(tmp_r)) / numpy.max(tmp_r - numpy.min(tmp_r)) * 6 - 3

                h = tmp_v + tmp_r
                r = tmp_v + tmp_r

                # h = tmp_v
                # r = tmp_v

                f = open('check_vrh.txt', 'a+')
                # check_v = numpy.dot(input, self.W.T)
                # check_r = numpy.dot(r_list[i-1], self.U.T)
                # check_h = numpy.dot(input, self.W.T) + self.hbias + numpy.dot(r_list[i-1], self.U.T)
                str_v = ''
                str_r = ''
                str_h = ''
                for i_check in xrange(30):
                    str_v += str(tmp_v[i_check]) + ','
                    str_r += str(tmp_r[i_check]) + ','
                    str_h += str(h[i_check]) + ','
                f.write(str_v + '\n')
                f.write(str_r + '\n')
                f.write(str_h + '\n')
                f.write('\n')
                f.close()

                print numpy.max(h)
                print numpy.min(h)

                # r = numpy.dot(input, self.W.T) + self.hbias + numpy.dot(r_list[i-1], self.U.T)
                # h = numpy.dot(input, self.W.T) + self.hbias + numpy.dot(r_list[i-1], self.U.T)

            r = sigmoid(r)
            h = sigmoid(h)

            h_list.append(h)
            r_list.append(r)

        h_list = numpy.array(h_list)
        r_list = numpy.array(r_list)

        # print 'output_hr check'
        # print numpy.max(self.input_v)
        # print numpy.min(self.input_v)
        # print numpy.average(self.input_v)

        # print numpy.max(self.W)
        # print numpy.min(self.W)
        # print numpy.average(self.W)

        # print numpy.max(h_list)
        # print numpy.min(h_list)
        # print numpy.average(h_list)

        return h_list, r_list
コード例 #36
0
ファイル: rbm.py プロジェクト: hamalab-test/t.nishisaki
 def reconstruct_from_output(self, output):
     input = numpy.dot(output, self.W) + self.vbias
     input_possible = sigmoid(input)
     # assert self.input.shape == input_possible.shape
     return input_possible
コード例 #37
0
ファイル: rbm.py プロジェクト: hamalab-test/t.nishisaki
 def output_from_input(self, input):
     output = numpy.dot(input, self.W.T) + self.hbias
     hidden_possible = sigmoid(output)
     return hidden_possible
コード例 #38
0
ファイル: rtrbm.py プロジェクト: hamalab-test/t.nishisaki
    def contrast_divergence(self, epoch):
        v_list = self.input_v
        h_list = []
        r_list = []
        d_list = []

        v_iteration_list = []
        h_iteration_list = []

        # t=0,,,Tまで隠れ層の出力hとリカレントの出力rを計算する
        for i in xrange(self.data_size):
            input = v_list[i]

            r = 0
            h = 0
            if i == 0:
                r = numpy.dot(input, self.W.T) + self.hbias
                h = numpy.dot(input, self.W.T) + self.hbias
            else:
                r = numpy.dot(input, self.W.T) + self.hbias + numpy.dot(r_list[i-1], self.U.T)
                h = numpy.dot(input, self.W.T) + self.hbias + numpy.dot(r_list[i-1], self.U.T)

            r = sigmoid(r)
            # h = numpy.dot(input, self.W.T) + self.hbias
            h = sigmoid(h)

            h_list.append(h)
            r_list.append(r)

            # CD iterationはとりあえず1で試す
            v_iteration = numpy.dot(h, self.W) + self.vbias
            v_iteration = sigmoid(v_iteration)

            h_iteration = 0
            if i == 0:
                h_iteration = numpy.dot(v_iteration, self.W.T) + self.hbias
            else:
                h_iteration = numpy.dot(v_iteration, self.W.T) + self.hbias + numpy.dot(r_list[i-1], self.U.T)
            h_iteration = sigmoid(h_iteration)

            v_iteration_list.append(v_iteration)
            h_iteration_list.append(h_iteration)

        # print numpy.array(v_iteration_list).shape
        # print numpy.array(h_iteration_list).shape

        v_list = numpy.array(v_list)
        h_list = numpy.array(h_list)
        r_list = numpy.array(r_list)
        d_list = numpy.array(d_list)
        v_iteration_list = numpy.array(v_iteration_list)
        h_iteration_list = numpy.array(h_iteration_list)

        d_reverse_list = []

        for i in reversed(xrange(self.data_size)):
            h_diff = h_list[i] - h_iteration_list[i]

            d = 0
            if i == self.data_size - 1:
                d = numpy.dot(self.U, h_diff)
            else:
                d = numpy.dot(self.U, d_reverse_list[-1] * r_list[i] * (1 - r_list[i]) + h_diff)

            d_reverse_list.append(d)

        d_reverse_list = numpy.array(d_reverse_list)

        d_list = []
        for i in xrange(len(d_reverse_list)):
            d_list.append(d_reverse_list[len(d_reverse_list) - i - 1])
        d_list = numpy.array(d_list)

        # calculate W H
        delta_H_W = [numpy.dot(h[numpy.newaxis, :].T, v[numpy.newaxis, :]) \
                   - numpy.dot(ha[numpy.newaxis, :].T, va[numpy.newaxis, :]) \
                   for v,h,va,ha \
                   in zip(v_list, h_list, v_iteration_list, h_iteration_list)]

        delta_H_W = numpy.array(delta_H_W)
        delta_H_W = numpy.average(delta_H_W, axis=0)

        # calculate W Q2
        # delta_Q2_W = [numpy.dot(d*r*(1-r)[numpy.newaxis, :].T, v[numpy.newaxis, :]) \
        #              for d,r,v \
        #              in zip(d_list, r_list, v_list)]

        _delta_Q2_W = [d*r*(1-r) \
                     for d,r,v \
                     in zip(d_list, r_list, v_list)]

        _delta_Q2_W = numpy.array(_delta_Q2_W)

        delta_Q2_W = [numpy.dot(dr[numpy.newaxis, :].T, v[numpy.newaxis, :]) \
                      for dr,v \
                      in zip(_delta_Q2_W, v_list)]

        delta_Q2_W = numpy.average(delta_Q2_W, axis=0)

        # calculate W delta
        # delta_W = delta_H_W + delta_Q2_W
        delta_W = delta_H_W

        # calculate U delta
        _delta_Q2_U = _delta_Q2_W + (h_list - h_iteration_list)
        delta_Q2_U = numpy.dot(_delta_Q2_U.T, r_list)
        # delta_Q2_U = numpy.average(delta_Q2_U, axis=0)
        # 上の式,Uは(output_size, output_size)なので実行できても意味が通ってるか確認すべき

        # !!! check d_list
        # print numpy.max(d_list)
        # print numpy.min(d_list)
        # print numpy.average(d_list)

        delta_U = delta_Q2_U

        # calculate vbias
        delta_vbias = v_list - v_iteration_list
        delta_vbias = numpy.average(delta_vbias, axis=0)

        # calculate hbias
        delta_hbias = h_list - h_iteration_list + _delta_Q2_W
        delta_hbias = numpy.average(delta_hbias, axis=0)

        ####################
        # gradient check
        ####################

        f = open('gradient_check_U_10000.txt', 'a+')
        f.write(str(numpy.sum(numpy.fabs(delta_U))) + '\n')
        print numpy.sum(numpy.fabs(delta_U))
        f.close()

        ####################
        # parameter update
        ####################

        # print 'delta_U'
        # print delta_U
        # print 'U'
        # print self.U

        self.W += self.lr * delta_W
        self.U += self.lr * delta_U - 0.01 * self.U
コード例 #39
0
ファイル: rbm.py プロジェクト: hamalab-test/t.nishisaki
    def contrast_divergence_eachdata(self, epoch):
        # print 'input.shape[0] : '+ str(self.input.shape[0])
        total_delta = numpy.zeros((self.output_size, self.input_size))

        for i in xrange(self.input.shape[0]):
            train_input = self.input[i]

            dw = numpy.zeros((self.output_size, self.input_size))
            dvb = numpy.zeros(self.input_size)
            dhb = numpy.zeros(self.output_size)

            output = numpy.dot(train_input, self.W.T) + self.hbias
            hidden_possible = sigmoid(output)
            # hidden_state = numpy_rng.binomial(n=1, p=hidden_possible)

            delta_W = []
            for j in xrange(hidden_possible.shape[0]):
                # j: 0~340
                delta_W_elem = train_input * hidden_possible[j]
                delta_W.append(delta_W_elem)
            delta_W = numpy.array(delta_W)

            dw += delta_W
            dvb += numpy.mean(train_input, axis=0)
            dhb += numpy.mean(hidden_possible, axis=0)

            visible_output = numpy.dot(hidden_possible, self.W) + self.vbias
            visible_possible = sigmoid(visible_output)

            hidden_output = numpy.dot(visible_possible, self.W.T) + self.hbias
            hidden_possible_after = sigmoid(hidden_output)

            delta_W = []
            for j in xrange(hidden_possible_after.shape[0]):
                # j: 0~340
                delta_W_elem = visible_possible * hidden_possible_after[j]
                delta_W.append(delta_W_elem)
            delta_W = numpy.array(delta_W)

            dw -= delta_W
            dvb -= numpy.mean(visible_possible, axis=0)
            dhb -= numpy.mean(hidden_possible_after, axis=0)

            # data_sizeで割るのは結局必要なのか?
            # self.W += self.learning_rate * dw

            total_delta += dw

            error = numpy.sum(numpy.abs(dw))
            print error

            os.chdir('result/rbm1_train' + str(epoch))
            f = open('error.txt', 'a')
            f.write(str(error) + ',')
            f.close()
            os.chdir('../../')

        # total_delta: -700~700 / 7000
        self.W += self.learning_rate * total_delta / self.data_size

        os.chdir('result/rbm1_train' + str(epoch))
        f = open('error.txt', 'a')
        f.write('\n')
        f.close()
        os.chdir('../../')
コード例 #40
0
 def predict_sigmoid(self, input):
     output = numpy.dot(input, self.W.T) + self.b
     hidden_possible = sigmoid(output)
     return hidden_possible
コード例 #41
0
ファイル: cnn.py プロジェクト: hamalab-test/t.nishisaki
    def pre_train(self):
        for ep in xrange(self.epoch):
            print 'pretrain epoch:' + str(ep+1)

            loss = 0.0

            if self.isRGB:
                for i_rgb in xrange(3):
                    data_input = self.input[i_rgb]

                    for i in xrange(data_input.shape[0]):
                        input_vector = data_input[i]

                        # 入力データの1次元ベクトルを2次元に直す
                        input = []
                        for j in xrange(self.prev_shape[1]):
                            # j 0~51
                            input.append(input_vector[j*self.prev_shape[0]:     (j+1)*self.prev_shape[0]])

                        input = numpy.array(input)

                        for y in xrange(self.post_shape[1]):
                            for x in xrange(self.post_shape[0]):
                                # print input.shape
                                # print x,y
                                # print x+self.filter_shape[0], y+self.filter_shape[1]

                                input_dot = input[y*self.filter_shift[0]:y*self.filter_shift[0]+self.filter_shape[1],
                                                  x*self.filter_shift[1]:x*self.filter_shift[1]+self.filter_shape[0]]

                                now_W = self.W
                                # if i_rgb == 0:
                                #     now_W = self.WR
                                # if i_rgb == 1:
                                #     now_W = self.WG
                                # if i_rgb == 2:
                                #     now_W = self.WB

                                output = [a*b for (a, b) in zip(input_dot, now_W)]
                                output = numpy.array(output)
                                output = output.sum() + self.bias
                                output_possible = sigmoid(output)

                                # 0,1の2値にする必要があるのかは不明
                                # output_state = numpy_rng.binomial(n=1, p=output_possible)
                                # print output_state

                                visible = output_possible * now_W
                                visible_possible = sigmoid(visible)

                                hidden_output = [a*b for (a, b) in zip(visible_possible, now_W)]
                                hidden_output = numpy.array(hidden_output)
                                hidden_output = hidden_output.sum() + self.bias
                                hidden_possible = sigmoid(hidden_output)

                                dw = numpy.zeros(self.filter_shape)
                                # print x,y
                                # print input_dot.shape
                                # print visible_possible.shape

                                dw = input_dot*output_possible - visible_possible*hidden_possible

                                loss += numpy.average(dw * dw)

                                # if self.isRGB:
                                #     if i_rgb == 0:
                                #         self.WR += self.lr * dw
                                #     elif i_rgb == 1:
                                #         self.WG += self.lr * dw
                                #     elif i_rgb == 2:
                                #         self.WB += self.lr * dw
                                # else:
                                #     self.W += self.lr * dw
                                self.W += self.lr * dw

                print loss

            else:
                for i in xrange(self.input.shape[0]):
                    input_vector = self.input[i]

                    # 入力データの1次元ベクトルを2次元に直す
                    input = []
                    for j in xrange(self.prev_shape[1]):
                        # j 0~51
                        input.append(input_vector[j*self.prev_shape[0]:     (j+1)*self.prev_shape[0]])

                    input = numpy.array(input)

                    for y in xrange(self.post_shape[1]):
                        for x in xrange(self.post_shape[0]):
                            # print input.shape
                            # print x,y
                            # print x+self.filter_shape[0], y+self.filter_shape[1]

                            input_dot = input[y*self.filter_shift[0]:y*self.filter_shift[0]+self.filter_shape[1],
                                              x*self.filter_shift[1]:x*self.filter_shift[1]+self.filter_shape[0]]

                            output = [a*b for (a, b) in zip(input_dot, self.W)]
                            output = numpy.array(output)
                            output = output.sum() + self.bias
                            output_possible = sigmoid(output)

                            # 0,1の2値にする必要があるのかは不明
                            # output_state = numpy_rng.binomial(n=1, p=output_possible)
                            # print output_state

                            visible = output_possible * self.W
                            visible_possible = sigmoid(visible)

                            print 'check!!'
                            print visible_possible.shape
                            print self.W

                            hidden_output = [a*b for (a, b) in zip(visible_possible, self.W)]
                            hidden_output = numpy.array(hidden_output)
                            hidden_output = hidden_output.sum() + self.bias
                            hidden_possible = sigmoid(hidden_output)

                            dw = numpy.zeros(self.filter_shape)
                            # print x,y
                            # print input_dot.shape
                            # print visible_possible.shape

                            dw = input_dot*output_possible - visible_possible*hidden_possible
                            self.W += self.lr * dw