コード例 #1
0
ファイル: main.py プロジェクト: csrs2000/Computer-Vision
def calculate_social_distancing(vid_path, net, output_dir, output_vid, ln1):
    
    count = 0
    vs = cv2.VideoCapture(vid_path)    

    # Get video height, width and fps
    height = int(vs.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(vs.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = int(vs.get(cv2.CAP_PROP_FPS))
    
    # Set scale for birds eye view
    # Bird's eye view will only show ROI
    scale_w, scale_h = utills.get_scale(width, height)

    fourcc = cv2.VideoWriter_fourcc(*"XVID")
    output_movie = cv2.VideoWriter("./output_vid/distancing.avi", fourcc, fps, (width, height))
    bird_movie = cv2.VideoWriter("./output_vid/bird_eye_view.avi", fourcc, fps, (int(width * scale_w), int(height * scale_h)))
        
    points = []
    global image
    
    while True:

        (grabbed, frame) = vs.read()

        if not grabbed:
            print('here')
            break
            
        (H, W) = frame.shape[:2]
        
        # first frame will be used to draw ROI and horizontal and vertical 180 cm distance(unit length in both directions)
        if count == 0:
            while True:
                image = frame
                cv2.imshow("image", image)
                cv2.waitKey(1)
                if len(mouse_pts) == 8:
                    cv2.destroyWindow("image")
                    break
               
            points = mouse_pts      
                 
        # Using first 4 points or coordinates for perspective transformation. The region marked by these 4 points are 
        # considered ROI. This polygon shaped ROI is then warped into a rectangle which becomes the bird eye view. 
        # This bird eye view then has the property property that points are distributed uniformally horizontally and 
        # vertically(scale for horizontal and vertical direction will be different). So for bird eye view points are 
        # equally distributed, which was not case for normal view.
        src = np.float32(np.array(points[:4]))
        dst = np.float32([[0, H], [W, H], [W, 0], [0, 0]])
        prespective_transform = cv2.getPerspectiveTransform(src, dst)

        # using next 3 points for horizontal and vertical unit length(in this case 180 cm)
        pts = np.float32(np.array([points[4:7]]))
        warped_pt = cv2.perspectiveTransform(pts, prespective_transform)[0]
        
        # since bird eye view has property that all points are equidistant in horizontal and vertical direction.
        # distance_w and distance_h will give us 180 cm distance in both horizontal and vertical directions
        # (how many pixels will be there in 180cm length in horizontal and vertical direction of birds eye view),
        # which we can use to calculate distance between two humans in transformed view or bird eye view
        distance_w = np.sqrt((warped_pt[0][0] - warped_pt[1][0]) ** 2 + (warped_pt[0][1] - warped_pt[1][1]) ** 2)
        distance_h = np.sqrt((warped_pt[0][0] - warped_pt[2][0]) ** 2 + (warped_pt[0][1] - warped_pt[2][1]) ** 2)
        pnts = np.array(points[:4], np.int32)
        cv2.polylines(frame, [pnts], True, (70, 70, 70), thickness=2)
    
    ####################################################################################
    
        # YOLO v3
        blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
        net.setInput(blob)
        start = time.time()
        layerOutputs = net.forward(ln1)
        end = time.time()
        boxes = []
        confidences = []
        classIDs = []   
    
        for output in layerOutputs:
            for detection in output:
                scores = detection[5:]
                classID = np.argmax(scores)
                confidence = scores[classID]
                # detecting humans in frame
                if classID == 0:

                    if confidence > confid:

                        box = detection[0:4] * np.array([W, H, W, H])
                        (centerX, centerY, width, height) = box.astype("int")

                        x = int(centerX - (width / 2))
                        y = int(centerY - (height / 2))

                        boxes.append([x, y, int(width), int(height)])
                        confidences.append(float(confidence))
                        classIDs.append(classID)
                    
        idxs = cv2.dnn.NMSBoxes(boxes, confidences, confid, thresh)
        font = cv2.FONT_HERSHEY_PLAIN
        boxes1 = []
        for i in range(len(boxes)):
            if i in idxs:
                boxes1.append(boxes[i])
                x,y,w,h = boxes[i]
                
        if len(boxes1) == 0:
            count = count + 1
            continue
            
        # Here we will be using bottom center point of bounding box for all boxes and will transform all those
        # bottom center points to bird eye view
        person_points = utills.get_transformed_points(boxes1, prespective_transform)
        
        # Here we will calculate distance between transformed points(humans)
        distances_mat, bxs_mat = utills.get_distances(boxes1, person_points, distance_w, distance_h)
        risk_count = utills.get_count(distances_mat)
    
        frame1 = np.copy(frame)
        
        # Draw bird eye view and frame with bouding boxes around humans according to risk factor    
        bird_image = plot.bird_eye_view(frame, distances_mat, person_points, scale_w, scale_h, risk_count)
        img = plot.social_distancing_view(frame1, bxs_mat, boxes1, risk_count)
        
        # Show/write image and videos
        if count != 0:
            output_movie.write(img)
            bird_movie.write(bird_image)
    
            cv2.imshow('Bird Eye View', bird_image)
            cv2.imwrite(output_dir+"frame%d.jpg" % count, img)
            cv2.imwrite(output_dir+"bird_eye_view/frame%d.jpg" % count, bird_image)
    
        count = count + 1
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
     
    vs.release()
    cv2.destroyAllWindows() 
コード例 #2
0
def calculate_social_distancing(vid_path, net, output_dir, output_vid, ln1):

    count = 0
    vs = cv2.VideoCapture(vid_path)

    # Get video height, width and fps
    height = int(vs.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(vs.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = int(vs.get(cv2.CAP_PROP_FPS))

    # Set scale for birds eye view
    scale_w, scale_h = utills.get_scale(width, height)

    fourcc = cv2.VideoWriter_fourcc(*"XVID")
    # Initialize writer objects
    output_movie = cv2.VideoWriter("Output.avi", fourcc, fps, (width, height))
    output_movie2 = cv2.VideoWriter("Output2.avi", fourcc, fps, (1920, 1080))
    bird_movie = cv2.VideoWriter("./output_vid/bird_eye_view.avi", fourcc, fps,
                                 (int(width * scale_w), int(height * scale_h)))

    points = []
    global image

    while True:
        # Read frames
        (grabbed, frame) = vs.read()

        if not grabbed:
            print('here')
            break

        (H, W) = frame.shape[:2]

        if count == 0:
            while True:
                image = frame
                cv2.imshow("image", image)
                cv2.waitKey(1)
                if len(mouse_pts) == 8:
                    cv2.destroyWindow("image")
                    break

            points = mouse_pts

        src = np.float32(np.array(points[:4]))
        dst = np.float32([[0, H], [W, H], [W, 0], [0, 0]])
        # Transform perspective using opencv method
        prespective_transform = cv2.getPerspectiveTransform(src, dst)

        # using next 3 points for horizontal and vertical unit length(in this case 6 Feets ~= 180 cm)
        pts = np.float32(np.array([points[4:7]]))
        warped_pt = cv2.perspectiveTransform(pts, prespective_transform)[0]

        # Calculate distance scale using marked points by user
        distance_w = np.sqrt((warped_pt[0][0] - warped_pt[1][0])**2 +
                             (warped_pt[0][1] - warped_pt[1][1])**2)
        distance_h = np.sqrt((warped_pt[0][0] - warped_pt[2][0])**2 +
                             (warped_pt[0][1] - warped_pt[2][1])**2)
        pnts = np.array(points[:4], np.int32)
        cv2.polylines(frame, [pnts], True, (70, 70, 70), thickness=2)

        # Using YOLO v3 model using dnn method
        blob = cv2.dnn.blobFromImage(frame,
                                     1 / 255.0, (416, 416),
                                     swapRB=True,
                                     crop=False)
        net.setInput(blob)
        start = time.time()
        layerOutputs = net.forward(ln1)
        end = time.time()
        boxes = []
        confidences = []
        classIDs = []

        for output in layerOutputs:
            for detection in output:
                scores = detection[5:]
                classID = np.argmax(scores)
                confidence = scores[classID]
                # detecting humans in frame
                if classID == 0:

                    if confidence > confid:
                        # Finding bounding boxes dimensions
                        box = detection[0:4] * np.array([W, H, W, H])
                        (centerX, centerY, width, height) = box.astype("int")

                        x = int(centerX - (width / 2))
                        y = int(centerY - (height / 2))

                        boxes.append([x, y, int(width), int(height)])
                        confidences.append(float(confidence))
                        classIDs.append(classID)
        # Applying Non Maximum Suppression to remove multiple bounding boxes around same object
        idxs = cv2.dnn.NMSBoxes(boxes, confidences, confid, thresh)
        font = cv2.FONT_HERSHEY_PLAIN
        boxes1 = []
        for i in range(len(boxes)):
            if i in idxs:
                boxes1.append(boxes[i])
                x, y, w, h = boxes[i]

        if len(boxes1) == 0:
            count = count + 1
            continue

        # Get transformed points using perspective transform
        person_points = utills.get_transformed_points(boxes1,
                                                      prespective_transform)

        # Get distances between the points
        distances_mat, bxs_mat = utills.get_distances(boxes1, person_points,
                                                      distance_w, distance_h)

        # Get the risk counts
        risk_count = utills.get_count(distances_mat)

        frame1 = np.copy(frame)

        bird_image = plot.bird_eye_view(frame, distances_mat, person_points,
                                        scale_w, scale_h, risk_count)
        img = plot.social_distancing_view(frame1, bxs_mat, boxes1, risk_count)
        if count != 0:

            bird_movie.write(bird_image)

            cv2.imshow('Social Distancing Detect', img)
            output_movie.write(img)
            output_movie2.write(img)
            cv2.imwrite(output_dir + "frame%d.jpg" % count, img)
            cv2.imwrite(output_dir + "bird_eye_view/frame%d.jpg" % count,
                        bird_image)

        count = count + 1
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        output_movie.write(img)

    vs.release()
    cv2.destroyAllWindows()
コード例 #3
0
ファイル: sdd_main.py プロジェクト: Albert0011/projekAI
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)

# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

# initialize the video stream and pointer to output video file
print("[INFO] accessing video stream...")
vs = cv2.VideoCapture(args["input"] if args["input"] else 0)
writer = None
writer2 = None

height2 = int(vs.get(cv2.CAP_PROP_FRAME_HEIGHT))
width2 = int(vs.get(cv2.CAP_PROP_FRAME_WIDTH))
scale_w, scale_h = utills.get_scale(width2, height2)

cv2.namedWindow("image")
cv2.setMouseCallback("image", get_mouse_points)

points = []
global image
count = 0

# loop over the frames from the video stream
while True:
    # read the next frame from the file
    (grabbed, frame) = vs.read()
    # kalau ga ada frame berarti selesai
    if not grabbed:
        print("ga kebaca")
コード例 #4
0
ファイル: video.py プロジェクト: nitin10s/Code_Hard
def calculate_social_distancing(vid_path, net, output_dir, output_vid, ln1):

    count = 0
    vs = cv2.VideoCapture(vid_path)

    height = int(vs.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(vs.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = int(vs.get(cv2.CAP_PROP_FPS))

    scale_w, scale_h = utills.get_scale(width, height)

    fourcc = cv2.VideoWriter_fourcc(*"XVID")
    output_movie = cv2.VideoWriter("./output_vid/distancing.avi", fourcc, fps,
                                   (width, height))
    bird_movie = cv2.VideoWriter("./output_vid/bird_eye_view.avi", fourcc, fps,
                                 (int(width * scale_w), int(height * scale_h)))

    points = []
    global image

    while True:

        (grabbed, frame) = vs.read()

        if not grabbed:
            print('here')
            break

        (H, W) = frame.shape[:2]

        if count == 0:
            while True:
                image = frame
                cv2.imshow("image", image)
                cv2.waitKey(1)
                if len(mouse_pts) == 8:
                    cv2.destroyWindow("image")
                    break

            points = mouse_pts

        src = np.float32(np.array(points[:4]))
        dst = np.float32([[0, H], [W, H], [W, 0], [0, 0]])
        prespective_transform = cv2.getPerspectiveTransform(src, dst)

        pts = np.float32(np.array([points[4:7]]))
        warped_pt = cv2.perspectiveTransform(pts, prespective_transform)[0]

        distance_w = np.sqrt((warped_pt[0][0] - warped_pt[1][0])**2 +
                             (warped_pt[0][1] - warped_pt[1][1])**2)
        distance_h = np.sqrt((warped_pt[0][0] - warped_pt[2][0])**2 +
                             (warped_pt[0][1] - warped_pt[2][1])**2)
        pnts = np.array(points[:4], np.int32)
        cv2.polylines(frame, [pnts], True, (70, 70, 70), thickness=2)

        blob = cv2.dnn.blobFromImage(frame,
                                     1 / 255.0, (416, 416),
                                     swapRB=True,
                                     crop=False)
        net.setInput(blob)
        start = time.time()
        layerOutputs = net.forward(ln1)
        end = time.time()
        boxes = []
        confidences = []
        classIDs = []

        for output in layerOutputs:
            for detection in output:
                scores = detection[5:]
                classID = np.argmax(scores)
                confidence = scores[classID]
                if classID == 0:

                    if confidence > confid:

                        box = detection[0:4] * np.array([W, H, W, H])
                        (centerX, centerY, width, height) = box.astype("int")

                        x = int(centerX - (width / 2))
                        y = int(centerY - (height / 2))

                        boxes.append([x, y, int(width), int(height)])
                        confidences.append(float(confidence))
                        classIDs.append(classID)

        idxs = cv2.dnn.NMSBoxes(boxes, confidences, confid, thresh)
        font = cv2.FONT_HERSHEY_PLAIN
        boxes1 = []
        for i in range(len(boxes)):
            if i in idxs:
                boxes1.append(boxes[i])
                x, y, w, h = boxes[i]

        if len(boxes1) == 0:
            count = count + 1
            continue

        person_points = utills.get_transformed_points(boxes1,
                                                      prespective_transform)

        distances_mat, bxs_mat = utills.get_distances(boxes1, person_points,
                                                      distance_w, distance_h)
        risk_count = utills.get_count(distances_mat)

        frame1 = np.copy(frame)

        bird_image = plot.bird_eye_view(frame, distances_mat, person_points,
                                        scale_w, scale_h, risk_count)
        img = plot.social_distancing_view(frame1, bxs_mat, boxes1, risk_count)

        if count != 0:
            output_movie.write(img)
            bird_movie.write(bird_image)

            cv2.imshow('Bird Eye View', bird_image)
            cv2.imwrite(output_dir + "frame%d.jpg" % count, img)
            cv2.imwrite(output_dir + "bird_eye_view/frame%d.jpg" % count,
                        bird_image)

        count = count + 1
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    vs.release()
    cv2.destroyAllWindows()