コード例 #1
0
from utils.Data import Data
from factories.NetworkFactory import NetworkFactory
from utils.Tags import NetworkTags
from utils.WinnerHolder import WinnerHolder

data = Data("resources/IrisDataTrain.xls", 125, shufle_data=True)
data.label_iris_dat()
normalized_data = data.normalize_data()
layers = [data.def_input_neurons(), 4, 4, 4, 4]
som = NetworkFactory.create(NetworkTags.SOM, layers)
# som.print()
som.train(data.get_raw_data(), data.label_iris_dat(), 2000)
# som.print()
# print("=============================================")
# print(WinnerHolder.get_winner())
# print("distance")
# print(som.layers_list[1].neuron_vector[0])
コード例 #2
0
from utils.Data import Data
from factories.NetworkFactory import NetworkFactory
from utils.Tags import NetworkTags
from utils.Functions import ActivaionFunction
from utils.NetworkHelper import NetworkHelper

data = Data("resources/IrisDataTrain.xls", 125, shufle_data=True)
data.label_iris_dat()
normalized_data = data.normalize_data()
layers = [data.def_input_neurons(), 3, data.def_input_neurons()]
encoder = NetworkFactory.create(NetworkTags.AutoEncoder, layers)
encoder.train(normalized_data,
              normalized_data,
              repetitions=500,
              activation_function=ActivaionFunction.HYPERBOLIC_TANGENT)
encoder.remove_unneeded_layers()

layers = [data.def_input_neurons(), 15, 7, data.def_output_neurons()]
mlp = NetworkFactory.create(NetworkTags.MLPWithEachLayerConnection, layers)
merged = NetworkHelper.merge_autoencoder_to_mlp(encoder, mlp)
finnal = NetworkHelper.add_neurons_to_first_hidden_layer(merged, 6)
finnal.update_id()

finnal.train(data.normalize_data(),
             data.label_iris_dat(),
             repetitions=500,
             activation_function=ActivaionFunction.HYPERBOLIC_TANGENT)

predict_data = Data("resources/IrisData.xls", 150, shufle_data=False)
returned_value = finnal.predict(
    predict_data.normalize_data(),
コード例 #3
0
from utils.Data import Data
from factories.NetworkFactory import NetworkFactory
from utils.Tags import NetworkTags

from utils.Functions import ActivaionFunction
import time

time_start = time.time()

data = Data("resources/IrisDataTrain.xls", 125, shufle_data=True)
data.label_iris_dat()
normalized_data = data.normalize_data()
print(normalized_data[0])

layers = [data.def_input_neurons(), 15, 10, data.def_output_neurons()]
mlp = NetworkFactory.create(NetworkTags.MLPWithContiguousConnection, layers)

mlp.train(data.normalize_data(),
          data.label_iris_dat(),
          repetitions=500,
          activation_function=ActivaionFunction.SIGMOID)
predict_data = Data("resources/IrisData.xls", 150, shufle_data=False)
returned_value = mlp.predict(predict_data.normalize_data(),
                             predict_data.label_iris_dat(),
                             activation_function=ActivaionFunction.SIGMOID)
labels = predict_data.label_iris_dat()
counter = 0

for i in range(len(returned_value)):
    print("label: {0}".format(labels[i]))
    print("output: {0}".format(returned_value[i]))