def __init__(self): train_transform = transforms.Compose([ transforms.Resize((384, 128), interpolation=3), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), RandomErasing(probability=0.5, mean=[0.0, 0.0, 0.0]) ]) train_transform_woEr = transforms.Compose([ transforms.Resize((384, 128), interpolation=3), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) test_transform = transforms.Compose([ transforms.Resize((384, 128), interpolation=3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.trainset = Market1501(train_transform, 'train', opt.data_path) self.trainset_woEr = Market1501(train_transform_woEr, 'train', opt.data_path) self.testset = Market1501(test_transform, 'test', opt.data_path) self.queryset = Market1501(test_transform, 'query', opt.data_path) self.train_loader = dataloader.DataLoader( self.trainset, sampler=RandomSampler(self.trainset, batch_id=opt.batchid, batch_image=opt.batchimage), batch_size=opt.batchid * opt.batchimage, num_workers=8, pin_memory=True) self.train_loader_woEr = dataloader.DataLoader( self.trainset_woEr, sampler=RandomSampler(self.trainset_woEr, batch_id=opt.batchid, batch_image=opt.batchimage), batch_size=opt.batchid * opt.batchimage, num_workers=8, pin_memory=True) self.test_loader = dataloader.DataLoader(self.testset, batch_size=opt.batchtest, num_workers=8, pin_memory=True) self.query_loader = dataloader.DataLoader(self.queryset, batch_size=opt.batchtest, num_workers=8, pin_memory=True)
def __init__(self): # paper is (384, 128) train_transform = transforms.Compose([ transforms.Resize((256, 256), interpolation=3), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), RandomErasing(probability=0.5, mean=[0.0, 0.0, 0.0]) ]) test_transform = transforms.Compose([ transforms.Resize((256, 256), interpolation=3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.trainset = Car(transforms=train_transform, root=opt.data_path) self.testset = Car(transforms=test_transform, root=opt.data_path) self.train_loader = dataloader.DataLoader( self.trainset, sampler=RandomSampler(self.trainset, batch_id=opt.batchid, batch_image=opt.batchimage), batch_size=opt.batchid * opt.batchimage, num_workers=8, pin_memory=True) self.test_loader = dataloader.DataLoader(self.testset, batch_size=opt.batchtest, num_workers=1, pin_memory=True)
def __init__(self, data="veri", size=(288, 288), sampler="triple", mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): train_transform = transforms.Compose([ transforms.Resize(size, interpolation=3), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), RandomErasing(probability=0.5, mean=mean) ]) test_transform = transforms.Compose([ transforms.Resize(size, interpolation=3), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) Dataset = { 'veri': VeRi, "vehicleid": VehicleID, 'market': Market1501, 'msmt': MSMT17 } self.trainset = Dataset[data](train_transform, 'train', opt.data_path) self.testset = Dataset[data](test_transform, 'test', opt.data_path) self.queryset = Dataset[data](test_transform, 'query', opt.data_path) self.nums = self.trainset.len if sampler == None: self.train_loader = dataloader.DataLoader(self.trainset, batch_size=opt.batchsize, shuffle=True, num_workers=4, pin_memory=True) elif sampler == "triple": self.train_loader = dataloader.DataLoader( self.trainset, sampler=RandomSampler(self.trainset, batch_id=opt.batchid, batch_image=opt.batchimage), batch_size=opt.batchid * opt.batchimage, num_workers=4, pin_memory=True) self.test_loader = dataloader.DataLoader(self.testset, batch_size=opt.batchtest, shuffle=False, num_workers=4, pin_memory=True) self.query_loader = dataloader.DataLoader(self.queryset, batch_size=opt.batchtest, shuffle=False, num_workers=4, pin_memory=True)
def __init__(self): transform_list = [ transforms.Resize((384, 128), interpolation=3), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] if opt.random_erasing: transform_list.append( RandomErasing(probability=0.5, mean=[0.0, 0.0, 0.0])) train_transform = transforms.Compose(transform_list) test_transform = transforms.Compose([ transforms.Resize((384, 128), interpolation=3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.trainset = Market1501(train_transform, 'train', opt.data_path, opt.augment) self.testset = Market1501(test_transform, 'test', opt.data_path) self.queryset = Market1501(test_transform, 'query', opt.data_path) self.train_loader = dataloader.DataLoader( self.trainset, sampler=RandomSampler(self.trainset, batch_id=opt.batchid, batch_image=opt.batchimage), batch_size=opt.batchid * opt.batchimage, num_workers=8, pin_memory=True) self.test_loader = dataloader.DataLoader(self.testset, batch_size=opt.batchtest, num_workers=8, pin_memory=True) self.query_loader = dataloader.DataLoader(self.queryset, batch_size=opt.batchtest, num_workers=8, pin_memory=True) if opt.mode == 'vis': self.query_image = test_transform(default_loader(opt.query_image))
def __init__(self): train_transform = transforms.Compose([ transforms.Resize((128, 288), interpolation=3), transforms.RandomHorizontalFlip(), transforms.ColorJitter(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), RandomErasing(probability=0.5, mean=[0.0, 0.0, 0.0]) ]) test_transform = transforms.Compose([ transforms.Resize((128, 288), interpolation=3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.trainset = CVWC(train_transform, 'train', opt.data_path) self.testset = CVWC(test_transform, 'test', opt.data_path) self.queryset = CVWC(test_transform, 'query', opt.data_path) self.train_loader = dataloader.DataLoader( self.trainset, sampler=RandomSampler(self.trainset, batch_id=opt.batchid, batch_image=opt.batchimage), batch_size=opt.batchid * opt.batchimage, num_workers=24, pin_memory=True, drop_last=True) self.test_loader = dataloader.DataLoader(self.testset, batch_size=opt.batchtest, num_workers=24, pin_memory=True) self.query_loader = dataloader.DataLoader(self.queryset, batch_size=opt.batchtest, num_workers=24, pin_memory=True) if opt.mode == 'vis': self.query_image = test_transform(default_loader(opt.query_image))
def __init__(self): train_transform = transforms.Compose([ transforms.Resize((384, 128), interpolation=3), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), RandomErasing(probability=0.5, mean=[0.0, 0.0, 0.0]) ]) test_transform = transforms.Compose([ transforms.Resize((384, 128), interpolation=3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # self.trainset = Market1501(train_transform, 'train', opt.data_path) # 分割训练集 train_set_path = get_path(opt.data_path, 'train') self.all_imgs_path = get_all_imgs_path(train_set_path) self.unique_ids = get_unique_ids(self.all_imgs_path) self.labeled_path, self.unlabeled_path = divide_trainset( self.unique_ids, self.all_imgs_path) self.trainset = AlMarket1501(train_transform, self.labeled_path, self.unique_ids) self.unlabeledset = AlMarket1501(train_transform, self.unlabeled_path, self.unique_ids) self.testset = Market1501(test_transform, 'test', opt.data_path) self.queryset = Market1501(test_transform, 'query', opt.data_path) self.train_loader = dataloader.DataLoader( self.trainset, sampler=RandomSampler(self.trainset, batch_id=opt.batchid, batch_image=opt.batchimage), batch_size=opt.batchid * opt.batchimage, num_workers=8, pin_memory=True) self.unlabeled_loader = dataloader.DataLoader(self.unlabeledset, batch_size=opt.batchtest, num_workers=8, pin_memory=True) self.test_loader = dataloader.DataLoader(self.testset, batch_size=opt.batchtest, num_workers=8, pin_memory=True) self.query_loader = dataloader.DataLoader(self.queryset, batch_size=opt.batchtest, num_workers=8, pin_memory=True) if opt.mode == 'vis': self.query_image = test_transform(default_loader(opt.query_image))
def __init__(self, test=None): rgb_transform = transforms.Compose( [transforms.Resize((384, 128), interpolation=3)]) gray_transform = transforms.Compose([ transforms.Resize((384, 128), interpolation=3), transforms.Grayscale(3) ]) test_transform = transforms.Compose([ transforms.Resize((384, 128), interpolation=3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) process_transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), RandomErasing(probability=0.5, mean=[0.0, 0.0, 0.0]) ]) woEr_process_transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.trainset = Market1501(data_path=opt.data_path, dtype="train", rgb_trans=rgb_transform, gray_trans=gray_transform, process_trans=process_transform) self.trainset_woEr = Market1501(data_path=opt.data_path, dtype="train", rgb_trans=rgb_transform, gray_trans=gray_transform, process_trans=woEr_process_transform) if test is None: self.testset = Market1501(data_path=opt.data_path, dtype="test", test_trans=test_transform) else: self.testset = Market1501(data_path=opt.data_path + '/' + str(test), dtype="test", test_trans=test_transform) self.queryset = Market1501(data_path=opt.data_path, dtype="query", test_trans=test_transform) self.train_loader = dataloader.DataLoader( self.trainset, sampler=RandomSampler(self.trainset, batch_id=opt.batchid, batch_image=opt.batchimage), batch_size=opt.batchid * opt.batchimage, num_workers=0, pin_memory=True) # 8 self.train_loader_woEr = dataloader.DataLoader( self.trainset_woEr, sampler=RandomSampler(self.trainset_woEr, batch_id=opt.batchid, batch_image=opt.batchimage), batch_size=opt.batchid * opt.batchimage, num_workers=0, pin_memory=True) # 8 self.test_loader = dataloader.DataLoader(self.testset, batch_size=opt.batchtest, num_workers=0, pin_memory=True) # 8 self.query_loader = dataloader.DataLoader(self.queryset, batch_size=opt.batchtest, num_workers=0, pin_memory=True) # 8
def __init__(self, rand_erasing=True, dataset='Market1501', data_path='./datasets/market_1501', batchid=16, batchimage=4, batchtest=16, num_workers=0, query_image=None, mode='train', input_height=384, input_width=128, **kwargs): train_transforms = [ transforms.Resize((input_height, input_width), interpolation=3), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] if rand_erasing: train_transforms.append( RandomErasing(probability=0.5, mean=[0.0, 0.0, 0.0])) train_transform = transforms.Compose(train_transforms) test_transform = transforms.Compose([ transforms.Resize((input_height, input_width), interpolation=3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) if dataset == 'Market1501': self.trainset = Market1501(train_transform, 'train', data_path) self.testset = Market1501(test_transform, 'test', data_path) self.queryset = Market1501(test_transform, 'query', data_path) elif dataset == 'DeepFashion': self.trainset = DeepFashion(train_transform, 'train', data_path) self.testset = DeepFashion(test_transform, 'test', data_path) self.queryset = DeepFashion(test_transform, 'query', data_path) else: raise Exception('Dataset not implemented: %s' % dataset) self.train_loader = dataloader.DataLoader( self.trainset, sampler=RandomSampler(self.trainset, batch_id=batchid, batch_image=batchimage), batch_size=batchid * batchimage, num_workers=num_workers, pin_memory=True) self.test_loader = dataloader.DataLoader(self.testset, batch_size=batchtest, num_workers=num_workers, pin_memory=True) self.query_loader = dataloader.DataLoader(self.queryset, batch_size=batchtest, num_workers=num_workers, pin_memory=True) if mode == 'vis': self.query_image = test_transform(default_loader(query_image))