# attributes that need to be adjusted, once the Curriculum decides to use # a more difficult dataset # this is a 'map' of attribute name to a path in the trainer object attributes_to_adjust = [ ('num_timesteps', ['predictor', 'localization_net']), ('num_timesteps', ['predictor', 'recognition_net']), ('num_timesteps', ['lossfun', '__self__']), ('num_labels', ['predictor', 'recognition_net']), ] # create train curriculum curriculum = BabyStepCurriculum( args.dataset_specification, FileBasedDataset, args.blank_label, attributes_to_adjust=attributes_to_adjust, trigger=(args.test_interval, 'iteration'), min_delta=0.1, ) train_dataset, validation_dataset = curriculum.load_dataset(0) # the metrics object calculates the loss metrics = SoftmaxMetrics( args.blank_label, args.char_map, train_dataset.num_timesteps, image_size, area_loss_factor=args.area_factor, aspect_ratio_loss_factor=args.aspect_factor, area_scaling_factor=args.area_scale_factor, uses_original_data=args.is_original_fsns,
# attributes that need to be adjusted, once the Curriculum decides to use # a more difficult dataset # this is a 'map' of attribute name to path in trainer object attributes_to_adjust = [ ('num_timesteps', ['predictor', 'localization_net']), ('num_timesteps', ['predictor', 'recognition_net']), ('num_timesteps', ['lossfun', '__self__']), ('num_labels', ['predictor', 'recognition_net']), ] curriculum = BabyStepCurriculum(args.dataset_specification, TextRecFileDataset, args.blank_label, attributes_to_adjust=attributes_to_adjust, trigger=(args.test_interval, 'iteration'), min_delta=1.0, dataset_args={ 'char_map': args.char_map, 'resize_size': target_shape, 'blank_label': args.blank_label, }) train_dataset, validation_dataset = curriculum.load_dataset(0) train_dataset.resize_size = image_size validation_dataset.resize_size = image_size metrics = TextRecSoftmaxMetrics( args.blank_label, args.char_map, train_dataset.num_timesteps, image_size,