def evaluate(items, outs, config, trial=None): eval_bpm = EvaluateBpm() eval_beat = EvaluateBeat("beat") data, bpm_label, beat_label = items downbeattheta_out, delta_beattheta = outs # beat estimation downbeattheta_out = np.argmax(downbeattheta_out, axis=1) / 6000 * 2 * math.pi beat_metrics = eval_beat.batch(downbeattheta_out, beat_label) # # global bpm estimation # bpm_out = delta_beattheta * 3000 / math.pi # bpm_out = medfilt(bpm_out, kernel_size=[1, 21]) # m, cnt = mode(np.round(bpm_out).astype(np.int64), axis=1) bpm_label = np.mean(bpm_label, axis=-1) m = calc_bpm_from_theta(downbeattheta_out, "beat") bpm_metrics = eval_bpm.global_(m, bpm_label) # local bpm estimation # bpm_metrics = eval_bpm.local(bpm_out, bpm_label) ret = {"beat": beat_metrics, "bpm": bpm_metrics} return ret return ret
def evaluate(items, outs, config): eval_bpm = EvaluateBpm() eval_beat = EvaluateBeat(estimated_type="activation", target_type="activation") data, bpm_label, beat_label = items beattheta_out, delta_beattheta = outs # beat estimation beattheta_out = np.argmax(beattheta_out, axis=1) / 6000 # theta = numpy_fft(beattheta_out * 2 * np.pi, 500) # theta /= (2 * np.pi) # activation = theta[:, :-1] - theta[:, 1:] # activation[activation <= 0] = 1e-6 beat_metrics = eval_beat.batch(beattheta_out, beat_label) # beat_metrics = eval_beat.batch(activation, beat_label) # global bpm estimation bpm_out = delta_beattheta * 3000 / np.pi bpm_out = medfilt(bpm_out, kernel_size=[1, 21]) m = calc_bpm_from_theta(beattheta_out * 2 * np.pi, "beat") bpm_label = np.mean(bpm_label, axis=-1) bpm_metrics = eval_bpm.global_(m, bpm_label) ret = {"beat": beat_metrics, "bpm": bpm_metrics} return ret
def evaluate(items, outs, config, data_type="test"): eval_bpm = EvaluateBpm() eval_beat = EvaluateBeat(estimated_type="activation", target_type="activation") eval_downbeat = EvaluateDownbeat(estimated_type="activation", target_type="activation") data, bpm_label, beattheta_label, downbeattheta_label = items beattheta_out, downbeattheta_out, deltabeat_out, deltadownbeat_out = outs # beat estimation beattheta_out = np.argmax(beattheta_out, axis=1) / 6000 downbeattheta_out = np.argmax(downbeattheta_out, axis=1) / 6000 activation = beattheta_out[:, :-1] - beattheta_out[:, 1:] activation[activation <= 0.7] = 1e-6 beat_metrics = eval_beat.batch(beattheta_out, beattheta_label) downbeat_met = eval_downbeat.batch(downbeattheta_out, downbeattheta_label) # global bpm estimation bpm_out = deltabeat_out * 3000 / np.pi bpm_out = medfilt(bpm_out, kernel_size=[1, 21]) if data_type == "valid": m, cnt = mode(np.round(bpm_out).astype(np.int64), axis=1) m = m[:, 0] elif data_type == "test": m = calc_bpm_from_theta(beattheta_out * 2 * np.pi, "beat") bpm_label = np.mean(bpm_label, axis=-1) bpm_metrics = eval_bpm.global_(m, bpm_label) ret = {"beat": beat_metrics, "bpm": bpm_metrics, "downbeat": downbeat_met} return ret
def evaluate(items, outs, config, trial=None): data, beat_label = items beattheta_out = outs eval_beat = EvaluateBeat(estimated_type="activation", target_type="activation") beattheta_out = np.argmax(beattheta_out, axis=1) / 6000 beat_metrics = eval_beat.batch(beattheta_out, beat_label) ret = {"beat": beat_metrics} return ret
def evaluate(items, outs, config, trial=None): data, bpm_label, beat_label = items beat_out, bpm_out = outs eval_beat = EvaluateBeat("downbeat") eval_bpm = EvaluateBpm() beat_metrics = eval_beat.batch(beat_out, beat_label) bpm_metrics = eval_bpm.local(bpm_out, bpm_label) ret = {"beat": beat_metrics, "bpm": bpm_metrics} return ret
def evaluate(items, outs, config, trial=None): data, bpm_label, beat_label = items bpm_out, beat_out = outs # (b,300,T), (b,T) bpm_out = np.mean(bpm_out, axis=-1) bpm_out = np.argmax(bpm_out, axis=1) bpm_label = np.mean(bpm_label, axis=-1) eval_beat = EvaluateBeat("beat") eval_bpm = EvaluateBpm() beat_metrics = eval_beat.batch(beat_out, beat_label) bpm_metrics = eval_bpm.global_(bpm_out, bpm_label) ret = {"beat": beat_metrics, "bpm": bpm_metrics} return ret
def evaluate(items, outs, config, trial=None): data, bpm_label, beat_label = items bpm_out, beat_out = outs bpm_out = np.argmax(bpm_out, axis=1) eval_beat = EvaluateBeat(estimated_type="activation", target_type="activation") eval_bpm = EvaluateBpm() beat_metrics = eval_beat.batch(beat_out, beat_label) bpm_label = np.mean(bpm_label, axis=-1) bpm_metrics = eval_bpm.global_(bpm_out, bpm_label) ret = {"beat": beat_metrics, "bpm": bpm_metrics} return ret
def evaluate(items, outs, config, trial=None): eval_beat = EvaluateBeat(estimated_type="activation", target_type="activation") data, beat_label = items sintheta, costheta = outs theta = np.arctan2(sintheta, costheta) theta[theta < 0] += 2 * np.pi beat_metrics = eval_beat.batch(theta, beat_label) ret = {"beat": beat_metrics} return ret
def evaluate(items, outs, config, trial=None): # eval_beat = EvaluateBeat(estimated_type="index", target_type="activation") eval_beat = EvaluateBeat(estimated_type="activation", target_type="activation") data, beat_label, bpm_label = items beattheta, f_softmax = outs # theta, idxs = numpy_fft(outs * 2 * np.pi, 100) # act = (outs[:, :-1] - outs[:, 1:]) / (2 * np.pi) # act[act <= 0] = 1e-5 beat_metrics = eval_beat.batch(beattheta, beat_label) ret = {"beat": beat_metrics} return ret
def evaluate(items, outs, config, trial=None): eval_bpm = EvaluateBpm() eval_beat = EvaluateBeat(estimated_type="activation", target_type="activation") data, bpm_label, beat_label = items beattheta_out, delta_beattheta = outs # beattheta_out, idxs = numpy_fft(beattheta_out * 2 * np.pi, 100) # beat estimation beat_metrics = eval_beat.batch(beattheta_out, beat_label) # global bpm estimation bpm_out = delta_beattheta * 3000 / np.pi bpm_out = medfilt(bpm_out, kernel_size=[1, 21]) m = calc_bpm_from_theta(beattheta_out * 2 * np.pi, "beat") bpm_label = np.mean(bpm_label, axis=-1) bpm_metrics = eval_bpm.global_(m, bpm_label) ret = {"beat": beat_metrics, "bpm": bpm_metrics} return ret
def evaluate(items, outs, config, trial=None): eval_bpm = EvaluateBpm() eval_beat = EvaluateBeat("beat") data, bpm_label, beat_label = items beat_out, delta_beattheta = outs bpm_out = delta_beattheta * 3000 / math.pi bpm_out = medfilt(bpm_out, kernel_size=[1, 21]) beat_metrics = eval_beat.batch(beat_out, beat_label) # global bpm estimation m, cnt = mode(np.round(bpm_out).astype(np.int64), axis=1) bpm_label = np.mean(bpm_label, axis=-1) bpm_metrics = eval_bpm.global_(m, bpm_label) # local bpm estimation # bpm_metrics = eval_bpm.local(bpm_out, bpm_label) ret = {"beat": beat_metrics, "bpm": bpm_metrics} return ret
def evaluate(items, outs, config, trial=None): eval_bpm = EvaluateBpm() eval_beat = EvaluateBeat(estimated_type="activation", target_type="activation") eval_downbeat = EvaluateDownbeat(estimated_type="activation", target_type="activation") data, bpm_label, beat_label, downbeat_label = items bpm_out, beat_out, downbeat_out = outs bpm_out = np.argmax(bpm_out, axis=1) beat_out = beat_out - downbeat_out beat_out[beat_out <= 0] = 1e-6 beat_metrics = eval_beat.batch(beat_out, beat_label) downbeat_metrics = eval_downbeat.batch(downbeat_out, downbeat_label) bpm_label = np.mean(bpm_label, axis=-1) # (batchsize,T) -> (batchsize) bpm_metrics = eval_bpm.global_(bpm_out, bpm_label) ret = { "beat": beat_metrics, "downbeat": downbeat_metrics, "bpm": bpm_metrics } return ret