# calculating features for whole dataset #print all_feat.shape # use regresion function to calculate v and a all_val = np.sum(np.array(test_feat) * X_v, axis=1) all_aro = np.sum(test_feat * X_a, axis=1) #print all_val.shape #print all_aro.shape print "ATTEMPT" + str(i) avg = average_distance_va(all_val, all_aro, valence, arousal, all_ids) nearest = nearest_dist_average_va(all_val, all_aro, valence, arousal, all_ids) standdev = no_stdev_average_va(all_val, all_aro, val_mean, aro_mean, valence, arousal, all_ids) valence_dist = valence_distance_va(all_val, all_aro, valence, arousal, all_ids) arousal_dist = arousal_distance_va(all_val, all_aro, valence, arousal, all_ids) print 'Average distance: ' + str(avg) print 'Nearest distance: ' + str(nearest) print 'Nearest distance: ' + str(standdev) if avg < best_avg: best_avg = avg best_near = nearest best_std = standdev if best_val > valence_dist: best_val = valence_dist
# calculating features for whole dataset #print all_feat.shape # use regresion function to calculate v and a all_val = np.sum(np.array(test_feat) * X_v, axis=1) all_aro = np.sum(test_feat * X_a, axis=1) #print all_val.shape #print all_aro.shape print "ATTEMPT" + str(i) avg = average_distance_va(all_val, all_aro, valence, arousal, all_ids) nearest = nearest_dist_average_va(all_val, all_aro, valence, arousal, all_ids) standdev = no_stdev_average_va(all_val, all_aro, val_mean, aro_mean, valence, arousal, all_ids) valence_dist = valence_distance_va(all_val, all_aro, valence, arousal, all_ids) arousal_dist = arousal_distance_va(all_val, all_aro, valence, arousal, all_ids) print 'Average distance: ' + str(avg) print 'Nearest distance: ' + str(nearest) print 'Nearest distance: ' + str(standdev) if avg < best_avg: best_avg = avg best_near = nearest best_std = standdev
train_ids = ids random.shuffle(train_ids) all_ids = train_ids[141:] train_ids = train_ids[0:140] # calcultae valence and arousal find_a_v_mens val_mean, aro_mean = find_a_v_mens_va(train_ids, valence, arousal) train_feat = find_in_dict(feat, train_ids) test_feat = find_in_dict(feat, all_ids) # use regression X_v, X_a = regression(train_feat, val_mean, aro_mean) # calculating features for whole dataset #print all_feat.shape # use regresion function to calculate v and a all_val = np.sum(np.array(test_feat) * X_v, axis=1) all_aro = np.sum(test_feat * X_a, axis=1) #print all_val.shape #print all_aro.shape #plot_all_va(all_val, all_aro, all_ids, valence, arousal) print 'Average distance: ' + str(average_distance_va(all_val, all_aro, valence, arousal, all_ids)) print 'Nearest distance: ' + str(nearest_dist_average_va(all_val, all_aro, valence, arousal, all_ids)) print 'Std distance: ' + str(no_stdev_average_va(all_val, all_aro, val_mean, aro_mean, valence, arousal, all_ids))