scheduler = LRSchedulerSGD() tr = Trainer(model, loss_DANN) tr.fit(train_gen_s, train_gen_t, n_epochs=dann_config.N_EPOCHS, validation_data=[val_gen_s, val_gen_t], metrics=[acc], steps_per_epoch=dann_config.STEPS_PER_EPOCH, val_freq=dann_config.VAL_FREQ, opt='sgd', opt_kwargs={ 'lr': 0.01, 'momentum': 0.9 }, lr_scheduler=scheduler, callbacks=[ print_callback(watch=[ "loss", "domain_loss", "val_loss", "val_domain_loss", 'trg_metrics', 'src_metrics' ]), ModelSaver('DANN', dann_config.SAVE_MODEL_FREQ), HistorySaver('log_with_sgd', dann_config.VAL_FREQ, extra_losses={ 'domain_loss': ['domain_loss', 'val_domain_loss'], 'train_domain_loss': ['domain_loss_on_src', 'domain_loss_on_trg'] }) ])
val_freq=dann_config.VAL_FREQ, opt='sgd', opt_kwargs={ 'lr': dann_config.LR, 'momentum': 0.9 }, lr_scheduler=scheduler, callbacks=[ print_callback(watch=[ "loss", "domain_loss", "val_loss", "val_domain_loss", 'trg_metrics', 'src_metrics' ]), ModelSaver( str(experiment_name + '_' + dann_config.SOURCE_DOMAIN + '_' + dann_config.TARGET_DOMAIN + '_' + details_name), dann_config.SAVE_MODEL_FREQ, save_by_schedule=True, save_best=True, eval_metric='accuracy'), WandbCallback( config=dann_config, name=str(dann_config.SOURCE_DOMAIN + "_" + dann_config.TARGET_DOMAIN + "_" + details_name), group=experiment_name), HistorySaver( str(experiment_name + '_' + dann_config.SOURCE_DOMAIN + '_' + dann_config.TARGET_DOMAIN + "_" + details_name), dann_config.VAL_FREQ, path=str('_log/' + experiment_name + "_" + details_name), extra_losses={ 'domain_loss': ['domain_loss', 'val_domain_loss'],