コード例 #1
0
    threash = cv2.threshold(gray, 0, 255,
                            cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV)[1]

    cnts = cv2.findContours(threash.copy(), cv2.RETR_EXTERNAL,
                            cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if imutils.is_cv2() else cnts[1]
    cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:4]
    cnts = contours.sort_contours(cnts)[0]

    output = cv2.merge([gray] * 3)
    predictions = []

    for c in cnts:
        x, y, w, h = cv2.boundingRect(c)
        roi = gray[y - 5:y + h + 5, x - 5:x + w + 5]
        roi = preprocess(roi, 28, 28)
        roi = np.expand_dims(
            img_to_array(roi), axis=0
        ) / 255.0  # output (batch_num, width, height, channels), add dim batch_num
        pred = model.predict(roi).argmax(
            axis=1)[0] + 1  #axis =0 row =1 columns
        predictions.append(str(pred))

        cv2.rectangle(output, (x - 2, y - 2), (x + w + 4, y + h + 4),
                      (0, 255, 0), 1)
        cv2.putText(output, str(pred), (x - 5, y - 5),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 255, 0), 2)

    print("[INFO] captcha: {}".format("".join(predictions)))
    cv2.imshow("output", output)
    cv2.waitKey()
コード例 #2
0
                             '--dataset',
                             required=True,
                             help='Path to input dataset.')
argument_parser.add_argument('-m',
                             '--model',
                             required=True,
                             help='Path to output model.')
arguments = vars(argument_parser.parse_args())

data = list()
labels = list()

for image_path in paths.list_images(arguments['dataset']):
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    image = preprocess(image, 28, 28)
    image = img_to_array(image)
    data.append(image)

    label = image_path.split(os.path.sep)[-2]
    labels.append(label)

data = np.array(data, dtype='float') / 255.0
labels = np.array(labels)

X_train, X_test, y_train, y_test = train_test_split(data,
                                                    labels,
                                                    test_size=.25,
                                                    random_state=42)

label_binarizer = LabelBinarizer().fit(y_train)