def run_animation(all_sheep, sheep_dict, herd): step = 0 target = np.array([600, 600]) r_dist = 250 r_rep = 14 speed = 2 n = len(all_sheep) app_dist = n + 50 radius = math.sqrt(n) * r_rep last_vector = np.zeros((n, 2), dtype=np.float32) while True: herd_point = herd.position2point().copy() if common.check(all_sheep, radius): shepherdR.driving(herd, all_sheep, speed, target, app_dist) else: shepherdR.collecting(herd, all_sheep, speed, app_dist) sheepR.sheep_move(herd_point, all_sheep, r_dist, r_rep, speed, sheep_dict, last_vector) tk.update() time.sleep(0.01) if common.is_all_in_target(all_sheep) or step > 4000: for per_sheep in sheep_dict.values(): per_sheep.delete() herd.delete() return common.calculate_dispersion(all_sheep) break step += 1 return step
y + Ra / 2, colors[1]) X = np.array(X) shepherd = Agent(560, 560, 560 + Ra, 560 + Ra, 'red') shepherd_point = shepherd.position2point() step = 0 global_mean = np.array([np.mean(X[:, 0]), np.mean(X[:, 1])]) """自适应模式切换""" while True: if check(X, global_mean): X, global_mean, shepherd_point = driving(shepherd_point, target, X, global_mean) else: X, global_mean, shepherd_point, = collecting( shepherd_point, X, global_mean) if all_sheeps_in(X) or step > 4000: disp = common.calculate_dispersion(X) print("dispersion: ", disp) Y.append(disp) break tk.update() time.sleep(0.01) step += 1 for i in range(N): # 每一轮都要先删除 再重建 删除羊 agent['sheep' + str(i)].delete() shepherd.delete() # 删除牧羊犬 # 打印数据 Y = np.array(Y) print("[", end="") for y in Y: print(",", end="")
def run_animation(all_sheep, sheep_dict, herd): step = 0 target = np.array([600, 600]) r_dist = 250 r_rep = 14 speed = 2 n = len(all_sheep) app_dist = n + 50 theta = math.pi / 4.5 fn = math.sqrt(n) * r_rep last_vector = np.zeros((n, 2), dtype=np.float32) # 处理轨迹 UU = [] VV = [] XX = [] YY = [] Px = {} Py = {} for i in range(n): Px['coor' + str(i)] = [] Py['coor' + str(i)] = [] for i in range(n): Px['coor' + str(i)].append(all_sheep[i][0]) Py['coor' + str(i)].append(all_sheep[i][1]) dist_center = 0 dist_shepherd = 0 pre_mean = np.array([np.mean(all_sheep[:, 0]), np.mean(all_sheep[:, 1])]) pre_herd = herd.position2point() while True: herd_point = herd.position2point().copy() if common.check_sector(all_sheep, theta, target) and common.check_dist( all_sheep, target, fn): shepherdR.driving(herd, all_sheep, speed, target, app_dist) else: shepherdR.collecting(herd, all_sheep, speed, app_dist, target) sheepR.sheep_move(herd_point, all_sheep, r_dist, r_rep, speed, sheep_dict, last_vector) tk.update() time.sleep(0.01) if common.is_all_in_target(all_sheep) or step > 4000: for per_sheep in sheep_dict.values(): per_sheep.delete() herd.delete() print("dispersion: ", common.calculate_dispersion(all_sheep)) break # 处理轨迹 global_mean = np.array( [np.mean(all_sheep[:, 0]), np.mean(all_sheep[:, 1])]) dist_center += la.norm(pre_mean - global_mean) pre_mean = global_mean dist_shepherd += la.norm(pre_herd - herd.position2point()) pre_herd = herd.position2point() for i in range(n): Px['coor' + str(i)].append(all_sheep[i][0]) Py['coor' + str(i)].append(all_sheep[i][1]) XX.append(herd.position2point()[0]) YY.append(herd.position2point()[1]) UU.append(global_mean[0]) VV.append(global_mean[1]) step += 1 xx = np.array(XX) yy = np.array(YY) common.print_list(xx) common.print_list(yy) return step
def run_animation(all_sheep, sheep_dict, herd): step = 0 # 目标值修改了 但是判定条件没有跟着修改 target = np.array([300, 300], np.float64) r_dist = 250 r_rep = 14 speed = 2 n = len(all_sheep) app_dist = n + 50 radius = math.sqrt(n) * r_rep last_vector = np.zeros((n, 2), dtype=np.float32) # 处理轨迹 UU = [] VV = [] XX = [] YY = [] Px = {} Py = {} for i in range(n): Px['coor' + str(i)] = [] Py['coor' + str(i)] = [] for i in range(n): Px['coor' + str(i)].append(all_sheep[i][0]) Py['coor' + str(i)].append(all_sheep[i][1]) dist_center = 0 dist_shepherd = 0 pre_mean = np.array([np.mean(all_sheep[:, 0]), np.mean(all_sheep[:, 1])]) pre_herd = herd.position2point() target_radius = 75 while True: herd_point = herd.position2point().copy() if common.check(all_sheep, radius): shepherdR.driving(herd, all_sheep, speed, target, app_dist) text = canvas.create_text(220, 20, text="driving", font=("宋体", 18)) canvas.pack() else: shepherdR.collecting(herd, all_sheep, speed, app_dist) text = canvas.create_text(220, 20, text="collecting", font=("宋体", 18)) canvas.pack() sheepR.sheep_move(herd_point, all_sheep, r_dist, r_rep, speed, sheep_dict, last_vector) step += 1 step_txt = canvas.create_text(420, 20, text="steps: {}/2000".format(step), font=("宋体", 18)) tk.update() time.sleep(0.01) canvas.delete(text) canvas.delete(step_txt) if common.is_all_in_center(all_sheep, target, target_radius) or step > 4000: for per_sheep in sheep_dict.values(): per_sheep.delete() herd.delete() print("dispersion: ", common.calculate_dispersion(all_sheep)) break # 处理轨迹 global_mean = np.array( [np.mean(all_sheep[:, 0]), np.mean(all_sheep[:, 1])]) dist_center += la.norm(pre_mean - global_mean) pre_mean = global_mean dist_shepherd += la.norm(pre_herd - herd.position2point()) pre_herd = herd.position2point() for i in range(n): Px['coor' + str(i)].append(all_sheep[i][0]) Py['coor' + str(i)].append(all_sheep[i][1]) XX.append(herd.position2point()[0]) YY.append(herd.position2point()[1]) UU.append(global_mean[0]) VV.append(global_mean[1]) # 处理轨迹 fig, ax = plt.subplots() xx = np.array(XX) yy = np.array(YY) uu = np.array(UU) vv = np.array(VV) for i in range(n): plt.plot(np.array(Px['coor' + str(i)]), 600 - np.array(Py['coor' + str(i)]), linewidth=0.1, c='silver') plt.plot(xx, 600 - yy, c='darkkhaki', label='shepherd', linewidth=2) plt.plot(uu, 600 - vv, '-.', c='darkcyan', label='sheep center', linewidth=2) plt.legend() y = np.arange(0, 600, 100) plt.xticks(y) plt.yticks(y) plt.xlabel("X Position") plt.ylabel("Y Position") plt.show() fig.savefig('E:\\我的坚果云\\latex\\doubleDistSum\\pics\\SPPL_trial60.pdf', dpi=600, format='pdf') ## 输出距离 print("dist_center:", dist_center) print("dist_shepherd:", dist_shepherd) return step
def run_animation(all_sheep, sheep_dict, herd): step = 0 target = np.array([600, 600], np.float64) r_dist = 250 r_rep = 14 speed = 2 n = len(all_sheep) app_dist = n + 50 theta = cmath.pi / 6 fn = cmath.sqrt(n) * r_rep last_vector = np.zeros((n, 2), dtype=np.float32) # 处理轨迹 UU = [] VV = [] XX = [] YY = [] Px = {} Py = {} for i in range(n): Px['coor' + str(i)] = [] Py['coor' + str(i)] = [] for i in range(n): Px['coor' + str(i)].append(all_sheep[i][0]) Py['coor' + str(i)].append(all_sheep[i][1]) dist_center = 0 dist_shepherd = 0 pre_mean = np.array([np.mean(all_sheep[:, 0]), np.mean(all_sheep[:, 1])]) pre_herd = herd.position2point() while True: herd_point = herd.position2point().copy() if common.check_sector(all_sheep, theta, target) and common.check_dist( all_sheep, target, fn): shepherdR.driving(herd, all_sheep, speed, target, app_dist) else: shepherdR.collecting(herd, all_sheep, speed, app_dist, target) sheepR.sheep_move(herd_point, all_sheep, r_dist, r_rep, speed, sheep_dict, last_vector) tk.update() time.sleep(0.01) if common.is_all_in_target(all_sheep) or step > 4000: for per_sheep in sheep_dict.values(): per_sheep.delete() herd.delete() print("dispersion: ", common.calculate_dispersion(all_sheep)) break # 处理轨迹 global_mean = np.array( [np.mean(all_sheep[:, 0]), np.mean(all_sheep[:, 1])]) dist_center += la.norm(pre_mean - global_mean) pre_mean = global_mean dist_shepherd += la.norm(pre_herd - herd.position2point()) pre_herd = herd.position2point() for i in range(n): Px['coor' + str(i)].append(all_sheep[i][0]) Py['coor' + str(i)].append(all_sheep[i][1]) XX.append(herd.position2point()[0]) YY.append(herd.position2point()[1]) UU.append(global_mean[0]) VV.append(global_mean[1]) step += 1 # 处理轨迹 fig, ax = plt.subplots() xx = np.array(XX) yy = np.array(YY) uu = np.array(UU) vv = np.array(VV) for i in range(n): plt.plot(np.array(Px['coor' + str(i)]), 600 - np.array(Py['coor' + str(i)]), linewidth=0.1, c="silver") plt.plot(xx, 600 - yy, c='darkkhaki', label='shepherd', linewidth=3) plt.plot(uu, 600 - vv, '-.', c='darkcyan', label='sheep center', linewidth=2) plt.legend() y = np.arange(0, 600, 100) plt.xticks(y) plt.yticks(y) plt.xlabel("X Position") plt.ylabel("Y Position") plt.show() fig.savefig('E:\\我的坚果云\\latex\\doubleDistSum\\pics\\MDAF_trial60.pdf', dpi=600, format='pdf') ## 输出距离 print("dist_center:", dist_center) print("dist_shepherd:", dist_shepherd) return step