コード例 #1
0
def apply_transforms(dataset, confs, batch_size):
    """
    Apply transforms to the dataset.
    :param confs: A list of configuration like {"name": "scaling", ... }, indicating the specified transform. We use
    "--------" to separate the pre-batch-transform and after-batch-transform.
    :param batch_size: The batch size to batch the dataset
    :return: A new dataset after transform
    """
    # Per point cloud instance transform
    pre_batch_confs = confs
    post_batch_confs = []
    try:
        batch_seperator_index = [type(x) is str and "---" in x for x in confs].index(True)
        pre_batch_confs = confs[:batch_seperator_index]
        post_batch_confs = confs[batch_seperator_index + 1:]
    except ValueError:
        # Cannot find the index
        pass

    log("Origin dataset={}".format(dataset))
    context = {"batch_size": batch_size}
    for conf in pre_batch_confs:
        transform = object_from_conf(conf, scope="transform", context=context)
        dataset = transform(dataset)
        log("After pre-batch transform \"{}\" with conf={}, dataset={}".format(conf["name"], conf, dataset))

    dataset = dataset.batch(batch_size)
    log("Batch transform, dataset={}".format(dataset))

    for conf in post_batch_confs:
        transform = object_from_conf(conf, scope="transform", context=context)
        dataset = transform(dataset)
        log("After post-batch transform \"{}\" with conf={}, dataset={}".format(conf["name"], conf, dataset))

    return dataset
コード例 #2
0
def learning_rate_from_config(learning_rate_conf):
    """
    Get the learning rate scheduler based on configuration
    :param learning_rate_conf: The learning rate configuration
    :return: A learning rate scheduler
    """
    return object_from_conf(learning_rate_conf, scope="learning_rate")
コード例 #3
0
def optimizer_from_config(learning_rate, optimizer_conf):
    """
    Get the optimizer from configuration
    :param learning_rate: The learning rate, might be a scalar or a learning rate schedule
    :param optimizer_conf: The optimizer configuration
    :return: An corresponding optimizer
    """
    context = {"learning_rate": learning_rate}
    return object_from_conf(optimizer_conf, scope="optimizer", context=context)
コード例 #4
0
def layer_from_config(layer_conf, model_conf, data_conf):
    """
    Get the corresponding keras layer from configurations
    :param layer_conf: The layer configuration
    :param model_conf: The global model configuration, sometimes it is used to generate some
    special layer like "output-classification" and "output-segmentation" layer
    :param data_conf: The dataset configuration, for generating special layers
    :return: A keras layer
    """
    # context = {"class_count": data_conf["class_count"]}
    return object_from_conf(layer_conf, scope="layer", context=None)