def predict(conf_dict): """ predict """ net = utility.import_object( conf_dict["net_py"], conf_dict["net_class"])(conf_dict) conf_dict.update({"num_epochs": "1", "batch_size": "1", "shuffle": "0", "train_file": conf_dict["test_file"]}) test_datafeed = datafeeds.TFPointwisePaddingData(conf_dict) test_l, test_r, test_y = test_datafeed.ops() # test network pred = net.predict(test_l, test_r) controler.run_predict(pred, test_y, conf_dict)
def predict(conf_dict): tf.compat.v1.reset_default_graph() net = utility.import_object(conf_dict["net_py"], conf_dict["net_class"])(conf_dict) conf_dict.update({ "batch_size": "1", "shuffle": "0", "train_file": conf_dict["test_file"] }) if "dropout_rate" in conf_dict: conf_dict.update({"dropout_rate": 1.0}) test_datafeed = datafeeds.TFPointwisePaddingData(conf_dict) test_l, test_r, test_y = test_datafeed.ops() pred = net.predict(test_l, test_r) controler.run_predict(pred, test_y, conf_dict)