コード例 #1
0
    def sell_real_time(self, data):
        """
        # 各种情况。。。。。卖出要排序
        # 计算延时时间,如果可以获取当前卖二价,则挂单卖,如果有挂最新卖价按钮,再好不过
        :return: DataFrame({'price':,'num':})。。。。
        """
        data_sell0 = pd.DataFrame([])
        # 涨停止盈,9%以上卖出什么的10%
        if float(data.price[0]) >= self.df.close[0] * 1.09:
            price = float(data.a3_p[0])
            df = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            num = self.obj_5.num_buy_process(coe=1, data=df)
            data_sell0 = pd.DataFrame({'price': price, 'num': num}, index=[0])

        # 长上影线止盈,卖3价,1/10
        data_sell1 = pd.DataFrame([])
        close_ave5 = create_data.ave_data_create(self.df.close, 5)
        open_ave5 = create_data.ave_data_create(self.df.open, 5)
        high_ave5 = create_data.ave_data_create(self.df.high, 5)
        low_ave5 = create_data.ave_data_create(self.df.low, 5)
        if ((float(data.high[0]) - max(float(data.open[0]), float(data.price[0]))) / (float(data.high[0]) - float(data.low[0])) >= 0.5) or \
                ((high_ave5[0] - max(open_ave5[0], close_ave5[0])) / (high_ave5[0] - low_ave5[0]) >= 0.5):
            if float(data.volume[0]) > self.df.volume[0:5].mean():
                price = float(data.a3_p[0])
                df = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
                num = self.obj_5.num_buy_process(coe=1, data=df)
                data_sell1 = pd.DataFrame({'price': price, 'num': num}, index=[0])

        # 跳空止盈,卖3价,1/10
        data_sell2 = pd.DataFrame([])
        if float(data.low[0]) > self.ave_price_5[0]:
            price = float(data.a3_p[0])
            df = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            num = self.obj_5.num_buy_process(coe=1, data=df)
            data_sell2 = pd.DataFrame({'price': price, 'num': num}, index=[0])

        data_sell_ = pd.concat([data_sell0, data_sell1, data_sell2])
        # 因为目前买价和买量都是一样的,所以不需要分类
        # 可能会有一个小bug,当一次性全部卖完的时候,也就是说,当vs的情况发生一个事件以上的时候,存量比卖出的数量要少。。。。
        if data_sell_.empty is False:
            num = data_sell_.num.sum()
            price = data_sell_.price.drop_duplicates()[0]
            data_sell_ = pd.DataFrame({'price': price, 'num': num}, index=[0])

        return data_sell_
コード例 #2
0
ファイル: line_angle.py プロジェクト: gxgjnn/live
 def __init__(self,
              stock_id,
              date=time.strftime('%Y%m%d', time.localtime(time.time()))):
     self.date = date
     self.stock_id = stock_id
     self.df = data_process.Get_DataFrame(self.stock_id, self.date)
     if len(self.df.high) >= 196:
         dif = max(self.df.high[:196]) - min(self.df.low[:196])
         # 根据196个交易日内,长宽比等于价格差与天数乘以系数(ef)比,为了计算自变量,来替换时间序列,好得出想要的角度
         # 切记,要个股196至200天的最高与最低的数据
         ef = round((36 / 12.5) * dif / 196, 4)
     else:
         # 如果数据不够的情况,为使角度变大
         ef = 0.0000001
     self.ef = ef
     # 不考虑数据不够的情况,比较少
     self.ave_price_60 = create_data.ave_data_create(self.df.close, 60)
     self.ave_price_5 = create_data.ave_data_create(self.df.close, 5)
コード例 #3
0
ファイル: line_angle.py プロジェクト: gxgjnn/live
    def angle_data(self, ave=60, stop_dot=50):
        """
        
        :return: DataFrame (for create line_model below,60 for angle enough)
        """

        date = []
        for i in range(1, stop_dot + 1):
            date.append(self.ef * i)
        ave_price = create_data.ave_data_create(self.df.close, ave)[:stop_dot]
        ave_price.reverse()
        data = pd.DataFrame({'date': date, 'price': np.array(ave_price)})
        # df = pd.DataFrame({'square_feet':[150,200,250,300,350,400,600],'price':[150,200,250,300,350,400,600]})
        return data
コード例 #4
0
def candle_k(data):
    """
    一定要更改均线值,不然均线会错误
    存在的问题:1 x轴日期包含非交易日和停牌日,如果遇到节假日,或者分钟级数据遇到收市,时间就不会连续;
               2 图为静态图;
               3 不能交互
               4 必须限定x轴日期范围
    :param data: 某只股票的数据集,不包括停牌数据
    :return: K线和成交量图
    """

    # drop the date index from the dateframe & make a copy
    datareshape = data.reset_index()
    # convert the datetime64 column in the dataframe to 'float days'
    datareshape['date'] = mdates.date2num(datareshape['date'].astype(dt.date))
    # clean day data for candle view
    datareshape.drop(['volume', 'amount', 'factor', 'code'],
                     axis=1,
                     inplace=True)
    # 填缺失值的行为,是停牌缺失还是列缺失
    datareshape = datareshape.reindex(
        columns=['date', 'open', 'high', 'low', 'close'])

    # 考虑不满足210天的股票
    # av1,av2长度为150
    av1 = create_data.ave_data_create(datareshape.close.values,
                                      MA1,
                                      date=len(datareshape))
    # av1.reverse()
    av2 = create_data.ave_data_create(datareshape.close.values,
                                      MA2,
                                      date=len(datareshape))
    # av2.reverse()
    sp = len(datareshape.date.values[MA2 - 1:])
    fig = plt.figure(facecolor='#07000d', figsize=(15, 10))

    ax1 = plt.subplot2grid((6, 4), (1, 0),
                           rowspan=4,
                           colspan=4,
                           axisbg='#07000d')
    candlestick_ohlc(ax1,
                     datareshape.values[-sp:],
                     width=.6,
                     colorup='#ff1717',
                     colordown='#53c156')
    Label1 = str(MA1) + ' SMA'
    Label2 = str(MA2) + ' SMA'

    ax1.plot(datareshape.date.values[-sp:],
             av1[-sp:],
             '#e1edf9',
             label=Label1,
             linewidth=1.5)
    ax1.plot(datareshape.date.values[-sp:],
             av2[-sp:],
             '#4ee6fd',
             label=Label2,
             linewidth=1.5)
    ax1.grid(True, color='w')
    ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
    ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
    ax1.yaxis.label.set_color("w")
    ax1.spines['bottom'].set_color("#5998ff")
    ax1.spines['top'].set_color("#5998ff")
    ax1.spines['left'].set_color("#5998ff")
    ax1.spines['right'].set_color("#5998ff")
    ax1.tick_params(axis='y', colors='w')
    plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
    ax1.tick_params(axis='x', colors='w')
    plt.ylabel('Stock price and Volume')

    # 绘制成交量
    volume_min = 0
    ax1v = ax1.twinx()
    ax1v.fill_between(datareshape.date.values[-sp:],
                      volume_min,
                      data.volume.values[-sp:],
                      facecolor='#00ffe8',
                      alpha=.4)
    ax1v.axes.yaxis.set_ticklabels([])
    ax1v.grid(False)
    # Edit this to 3, so it's a bit larger
    ax1v.set_ylim(0, 3 * data.volume.values.max())
    ax1v.spines['bottom'].set_color("#5998ff")
    ax1v.spines['top'].set_color("#5998ff")
    ax1v.spines['left'].set_color("#5998ff")
    ax1v.spines['right'].set_color("#5998ff")
    ax1v.tick_params(axis='x', colors='w')
    ax1v.tick_params(axis='y', colors='w')

    # 修饰 添加股票代码以及指定位置添加文字与箭头
    plt.suptitle(stock, color='w')
    # plt.setp(ax0.get_xticklabels(), visible=False)
    plt.setp(ax1.get_xticklabels(), visible=False)

    # Mark big event
    # TODO: Make a real case here
    ax1.annotate('BreakNews!', (datareshape.date.values[90], av1[90]),
                 xytext=(0.8, 0.9),
                 textcoords='axes fraction',
                 arrowprops=dict(facecolor='white', shrink=0.05),
                 fontsize=10,
                 color='w',
                 horizontalalignment='right',
                 verticalalignment='bottom')

    plt.subplots_adjust(left=.09,
                        bottom=.14,
                        right=.94,
                        top=.95,
                        wspace=.20,
                        hspace=0)

    plt.show()
コード例 #5
0
ファイル: strategy2a.py プロジェクト: gxgjnn/live
    def selling_3(self, first_sell_up, second_sell_up, third_sell_up,
                  first_sell_down):
        global running_box
        # 支撑线压力线,波谷波峰数据集,变异系数,支撑点压力点,以及原因的获取
        # df_s, cv_s, price_s = self.support_line()
        e_support, reason_s = self.support_dot()
        # df_p, cv_p, price_p = self.pressure_line()
        e_pressure, reason_p = self.pressure_dot()
        obj1 = Deal(self.stock_id)

        price_buy = 0
        price_sell = 0
        cash = 0
        num = 0
        # 涨停止盈
        if self.df.low[0] <= self.df.close[1] * 1.09 <= self.df.high[0]:
            price_buy = 0
            price_sell = self.df.close[1] * 1.09
            num0 = list(running_box.loc[running_box.stock_id == self.stock_id,
                                        'bought_num'])[0] / 5
            num = math.floor(num0 * 100) * 100
            commission_buy, commission_sell = obj1.order_cost(
                num,
                price_sell,
                close_tax=0.001,
                open_commission=0.0003,
                close_commission=0.0003,
                min_commission=5)
            cash = num * price_sell - commission_sell
            if num >= 200:
                print 'situation3_5'
                return price_buy, price_sell, cash, num
            else:
                num = 200
                commission_buy, commission_sell = obj1.order_cost(
                    num,
                    price_sell,
                    close_tax=0.001,
                    open_commission=0.0003,
                    close_commission=0.0003,
                    min_commission=5)
                cash = num * price_sell - commission_sell
                print 'situation3_6'
                return price_buy, price_sell, cash, num

        # 长上影线止盈
        close_ave5 = create_data.ave_data_create(self.df.close, 5)
        open_ave5 = create_data.ave_data_create(self.df.open, 5)
        high_ave5 = create_data.ave_data_create(self.df.high, 5)
        low_ave5 = create_data.ave_data_create(self.df.low, 5)
        if ((self.df.high[0] - max(self.df.close[0], self.df.open[0])) / (self.df.high[0] - self.df.low[0]) >= 0.5) or \
                ((high_ave5[0] - max(open_ave5[0], close_ave5[0])) / (high_ave5[0] - low_ave5[0]) >= 0.5):
            if self.df.volume[0] > self.df.volums[0:5].mean():
                price_buy = 0
                price_sell = self.df.close[0]
                num0 = list(
                    running_box.loc[running_box.stock_id == self.stock_id,
                                    'bought_num'])[0] / 5
                num = math.floor(num0 * 100) * 100
                commission_buy, commission_sell = obj1.order_cost(
                    num,
                    price_sell,
                    close_tax=0.001,
                    open_commission=0.0003,
                    close_commission=0.0003,
                    min_commission=5)
                cash = num * price_sell - commission_sell
                if num >= 200:
                    print 'situation3_7'
                    return price_buy, price_sell, cash, num
                else:
                    num = 200
                    commission_buy, commission_sell = obj1.order_cost(
                        num,
                        price_sell,
                        close_tax=0.001,
                        open_commission=0.0003,
                        close_commission=0.0003,
                        min_commission=5)
                    cash = num * price_sell - commission_sell
                    print 'situation3_8'
                    return price_buy, price_sell, cash, num

        if self.df.high[0] < self.ave_price_60[0]:
            price_sell = min(e_support, first_sell_down) * 0.99
            # 支撑位止损
            if self.df.close[0] <= price_sell:
                num = list(
                    running_box.loc[running_box.stock_id == self.stock_id,
                                    'bought_num'])[0]
                commission_buy, commission_sell = obj1.order_cost(
                    num,
                    price_sell,
                    close_tax=0.001,
                    open_commission=0.0003,
                    close_commission=0.0003,
                    min_commission=5)
                cash = num * price_sell - commission_sell
                print 'situation3_9'
                return price_buy, price_sell, cash, num
        else:
            # 跳空止盈
            if self.df.low[0] > self.ave_price_5[0]:
                price_buy = 0
                price_sell = self.df.close[0]
                num0 = list(
                    running_box.loc[running_box.stock_id == self.stock_id,
                                    'bought_num'])[0] / 5
                num = math.floor(num0 * 100) * 100
                commission_buy, commission_sell = obj1.order_cost(
                    num,
                    price_sell,
                    close_tax=0.001,
                    open_commission=0.0003,
                    close_commission=0.0003,
                    min_commission=5)
                cash = num * price_sell - commission_sell
                if num >= 200:
                    print 'situation3_10'
                    return price_buy, price_sell, cash, num
                else:
                    num = 200
                    commission_buy, commission_sell = obj1.order_cost(
                        num,
                        price_sell,
                        close_tax=0.001,
                        open_commission=0.0003,
                        close_commission=0.0003,
                        min_commission=5)
                    cash = num * price_sell - commission_sell
                    print 'situation3_11'
                    return price_buy, price_sell, cash, num
            # 超过压力位止盈
            # 对于cv_p没做限定,如果存在负角度的压力线,是否会低于60日线,已改pressure角度0到30
            elif self.df.low[0] <= first_sell_up <= self.df.high[0]:
                price_buy = 0
                price_sell = self.df.close[0]
                num0 = list(
                    running_box.loc[running_box.stock_id == self.stock_id,
                                    'bought_num'])[0] / 5
                num = math.floor(num0 * 100) * 100
                commission_buy, commission_sell = obj1.order_cost(
                    num,
                    price_sell,
                    close_tax=0.001,
                    open_commission=0.0003,
                    close_commission=0.0003,
                    min_commission=5)
                cash = num * price_sell - commission_sell
                if num >= 200:
                    print 'situation3_12'
                    return price_buy, price_sell, cash, num
                else:
                    num = 200
                    commission_buy, commission_sell = obj1.order_cost(
                        num,
                        price_sell,
                        close_tax=0.001,
                        open_commission=0.0003,
                        close_commission=0.0003,
                        min_commission=5)
                    cash = num * price_sell - commission_sell
                    print 'situation3_13'
                    return price_buy, price_sell, cash, num
            elif self.df.low[0] <= second_sell_up <= self.df.high[0]:
                price_buy = 0
                price_sell = self.df.close[0]
                num0 = list(
                    running_box.loc[running_box.stock_id == self.stock_id,
                                    'bought_num'])[0] / 5
                num = math.floor(num0 * 100) * 100
                commission_buy, commission_sell = obj1.order_cost(
                    num,
                    price_sell,
                    close_tax=0.001,
                    open_commission=0.0003,
                    close_commission=0.0003,
                    min_commission=5)
                cash = num * price_sell - commission_sell
                if num >= 200:
                    print 'situation3_14'
                    return price_buy, price_sell, cash, num
                else:
                    num = 200
                    commission_buy, commission_sell = obj1.order_cost(
                        num,
                        price_sell,
                        close_tax=0.001,
                        open_commission=0.0003,
                        close_commission=0.0003,
                        min_commission=5)
                    cash = num * price_sell - commission_sell
                    print 'situation3_15'
                    return price_buy, price_sell, cash, num
            elif self.df.low[0] <= third_sell_up <= self.df.high[0]:
                price_buy = 0
                price_sell = self.df.close[0]
                num0 = list(
                    running_box.loc[running_box.stock_id == self.stock_id,
                                    'bought_num'])[0] / 5
                num = math.floor(num0 * 100) * 100
                commission_buy, commission_sell = obj1.order_cost(
                    num,
                    price_sell,
                    close_tax=0.001,
                    open_commission=0.0003,
                    close_commission=0.0003,
                    min_commission=5)
                cash = num * price_sell - commission_sell
                if num >= 200:
                    print 'situation3_16'
                    return price_buy, price_sell, cash, num
                else:
                    num = 200
                    commission_buy, commission_sell = obj1.order_cost(
                        num,
                        price_sell,
                        close_tax=0.001,
                        open_commission=0.0003,
                        close_commission=0.0003,
                        min_commission=5)
                    cash = num * price_sell - commission_sell
                    print 'situation3_17'
                    return price_buy, price_sell, cash, num

        return price_buy, price_sell, cash, num
コード例 #6
0
        overlap.add(line)

    if render_path:
        overlap.render(render_path)
    return overlap  # .render('k-line.html')


if __name__ == '__main__':
    # 数据导入
    name = '300317'
    period = '1'
    if period.isdigit():
        period += 'day'
    data_raw = data_process.Get_DataFrame(name, '20171210')
    data_raw.sort_index(inplace=True)
    ma5 = create_data.ave_data_create(data_raw.close.values, 5)[:150]
    ma5.reverse()
    ma60 = create_data.ave_data_create(data_raw.close.values, 60)[:150]
    ma60.reverse()
    # 均线维度必须一致,data不能有空值
    data_new = pd.DataFrame(data_raw,
                            columns=['open', 'high', 'low', 'close', 'volume'])
    open = list(data_new.open)[:150]
    open.reverse()
    close = list(data_new.close)[:150]
    close.reverse()
    high = list(data_new.high)[:150]
    high.reverse()
    low = list(data_new.low)[:150]
    low.reverse()
    volume = list(data_new.volume)[:150]