val_data, batch_size=batch_size, shuffle=True, num_workers=num_dataloader_workers, pin_memory=gpu, ) test_dataloader = torch.utils.data.DataLoader( test_data, batch_size=batch_size, shuffle=True, num_workers=num_dataloader_workers, pin_memory=gpu, ) # Creating a sample set to visualize the model's training sample = data.get_samples_from_data(val_data, 16) ################################################################################ ##################################### Model #################################### ################################################################################ # Create Model model = autoencoder.ConvolutionalAE( max_filters=max_filters, num_layers=num_layers, input_image_dimensions=image_size, latent_dim=latent_dim, small_conv=small_conv, ) model.to(device)
val_fusions, batch_size=batch_size, shuffle=True, num_workers=num_dataloader_workers, pin_memory=gpu, ) test_fusion_dataloader = torch.utils.data.DataLoader( test_fusions, batch_size=batch_size, shuffle=True, num_workers=num_dataloader_workers, pin_memory=gpu, ) # Creating a sample set that we visualize every epoch to show the model's training sample = data.get_samples_from_data(val_data, 16, fusion=False) test_sample = data.get_samples_from_data(test_data, 16, fusion=False) fusion_sample = data.get_samples_from_data(val_fusions, 4, fusion=True) fusion_test_sample = data.get_samples_from_data(test_fusions, 4, fusion=True) ################################################################################ ##################################### Model #################################### ################################################################################ # Create Model model = models.ConvolutionalVAE( max_filters=max_filters, num_layers=num_layers, input_image_dimensions=image_size, latent_dim=latent_dim, small_conv=small_conv,