コード例 #1
0
def _segment_vol(file_path, model, orientation, batch_size, cuda_available, device):
    volume, header = du.load_and_preprocess_eval(file_path,
                                                 orientation=orientation)

    volume = volume if len(volume.shape) == 4 else volume[:, np.newaxis, :, :]
    volume = torch.tensor(volume).type(torch.FloatTensor)

    volume_pred = []
    for i in range(0, len(volume), batch_size):
        batch_x = volume[i: i + batch_size]
        if cuda_available:
            batch_x = batch_x.cuda(device)
        out = model(batch_x)
        # _, batch_output = torch.max(out, dim=1)
        volume_pred.append(out)

    volume_pred = torch.cat(volume_pred)
    _, volume_prediction = torch.max(volume_pred, dim=1)

    volume_prediction = (volume_prediction.cpu().numpy()).astype('float32')
    volume_prediction = np.squeeze(volume_prediction)
    if orientation == "COR":
        volume_prediction = volume_prediction.transpose((1, 2, 0))
        volume_pred = volume_pred.permute((2, 1, 3, 0))
    elif orientation == "AXI":
        volume_prediction = volume_prediction.transpose((2, 0, 1))
        volume_pred = volume_pred.permute((3, 1, 0, 2))

    return volume_pred, volume_prediction, header
コード例 #2
0
def compute_vol_bulk(prediction_dir, dir_struct, label_names, volumes_txt_file):
    print("**Computing volume estimates**")

    with open(volumes_txt_file) as file_handle:
        volumes_to_use = file_handle.read().splitlines()

    file_paths = du.load_file_paths_eval(prediction_dir, volumes_txt_file, dir_struct)

    volume_dict_list = []

    for vol_idx, file_path in enumerate(file_paths):
        volume_prediction, header = du.load_and_preprocess_eval(file_path, "SAG", notlabel=False)
        per_volume_dict = compute_volume(volume_prediction, label_names, volumes_to_use[vol_idx])
        volume_dict_list.append(per_volume_dict)

    _write_csv_table('volume_estimates.csv', prediction_dir, volume_dict_list, label_names)
    print("**DONE**")
コード例 #3
0
def _segment_vol_unc(file_path, model, orientation, batch_size, mc_samples, cuda_available, device):
    volume, header = du.load_and_preprocess_eval(file_path,
                                                 orientation=orientation)

    volume = volume if len(volume.shape) == 4 else volume[:, np.newaxis, :, :]
    volume = torch.tensor(volume).type(torch.FloatTensor)

    mc_pred_list = []
    for j in range(mc_samples):
        volume_pred = []
        for i in range(0, len(volume), batch_size):
            batch_x = volume[i: i + batch_size]
            if cuda_available:
                batch_x = batch_x.cuda(device)
            out = model.predict(batch_x, enable_dropout=True, out_prob=True)
            # _, batch_output = torch.max(out, dim=1)
            volume_pred.append(out)

        volume_pred = torch.cat(volume_pred)
        _, volume_prediction = torch.max(volume_pred, dim=1)

        volume_prediction = (volume_prediction.cpu().numpy()).astype('float32')
        volume_prediction = np.squeeze(volume_prediction)
        if orientation == "COR":
            volume_prediction = volume_prediction.transpose((1, 2, 0))
            volume_pred = volume_pred.permute((2, 1, 3, 0))
        elif orientation == "AXI":
            volume_prediction = volume_prediction.transpose((2, 0, 1))
            volume_pred = volume_pred.permute((3, 1, 0, 2))

        mc_pred_list.append(volume_prediction)
        if j == 0:
            expected_pred = (1 / mc_samples) * volume_pred
        else:
            expected_pred += (1 / mc_samples) * volume_pred

        _, final_seg = torch.max(expected_pred, dim=1)
        final_seg = (final_seg.cpu().numpy()).astype('float32')
        final_seg = np.squeeze(final_seg)

    return expected_pred, final_seg, mc_pred_list, header