def create_data_gen_pipeline(cf, patient_data, do_aug=True, **kwargs): """ create mutli-threaded train/val/test batch generation and augmentation pipeline. :param patient_data: dictionary containing one dictionary per patient in the train/test subset. :param is_training: (optional) whether to perform data augmentation (training) or not (validation/testing) :return: multithreaded_generator """ # create instance of batch generator as first element in pipeline. data_gen = BatchGenerator(cf, patient_data, **kwargs) my_transforms = [] if do_aug: if cf.da_kwargs["mirror"]: mirror_transform = Mirror(axes=cf.da_kwargs['mirror_axes']) my_transforms.append(mirror_transform) spatial_transform = SpatialTransform(patch_size=cf.patch_size[:cf.dim], patch_center_dist_from_border=cf.da_kwargs['rand_crop_dist'], do_elastic_deform=cf.da_kwargs['do_elastic_deform'], alpha=cf.da_kwargs['alpha'], sigma=cf.da_kwargs['sigma'], do_rotation=cf.da_kwargs['do_rotation'], angle_x=cf.da_kwargs['angle_x'], angle_y=cf.da_kwargs['angle_y'], angle_z=cf.da_kwargs['angle_z'], do_scale=cf.da_kwargs['do_scale'], scale=cf.da_kwargs['scale'], random_crop=cf.da_kwargs['random_crop']) my_transforms.append(spatial_transform) else: my_transforms.append(CenterCropTransform(crop_size=cf.patch_size[:cf.dim])) my_transforms.append(ConvertSegToBoundingBoxCoordinates(cf.dim, cf.roi_items, False, cf.class_specific_seg)) all_transforms = Compose(my_transforms) # multithreaded_generator = SingleThreadedAugmenter(data_gen, all_transforms) multithreaded_generator = MultiThreadedAugmenter(data_gen, all_transforms, num_processes=cf.n_workers, seeds=range(cf.n_workers)) return multithreaded_generator
def generate_train_batch(self, pid=None): if pid is None: pid = self.dataset_pids[self.patient_ix] patient = self._data[pid] # already swapped dimensions in pp from (c,)z,y,x to c,y,x,z or h,w,d to ease 2D/3D-case handling all_data = np.load(patient['data'], mmap_mode='r') data = all_data[0].astype('float16')[np.newaxis] seg = all_data[1].astype('uint8')[np.newaxis] data_shp_raw = data.shape data = data[self.chans] spatial_shp = data[0].shape # spatial dims need to be in order x,y,z assert spatial_shp == seg[0].shape, "spatial shape incongruence betw. data and seg" out_data = data[None] out_seg = seg[None] batch_2D = {'data': out_data, 'seg': out_seg} for o in self.cf.roi_items: batch_2D[o] = np.repeat(np.array([patient[o]]), len(out_data), axis=0) converter = ConvertSegToBoundingBoxCoordinates(2, self.cf.roi_items, False, self.cf.class_specific_seg) batch_2D = converter(**batch_2D) batch_2D.update({'patient_bb_target': batch_2D['bb_target'], 'original_img_shape': out_data.shape}) for o in self.cf.roi_items: batch_2D["patient_" + o] = batch_2D[o] out_batch = batch_2D out_batch.update({'pid': np.array([patient['pid']] * len(out_data))}) self.patient_ix += 1 if self.patient_ix == len(self.dataset_pids): self.patient_ix = 0 return out_batch
def generate_train_batch(self, pid=None): if pid is None: pid = self.dataset_pids[self.patient_ix] patient = self._data[pid] # already swapped dimensions in pp from (c,)z,y,x to c,y,x,z or h,w,d to ease 2D/3D-case handling data = np.load(patient['data'], mmap_mode='r').astype('float16')[np.newaxis] seg = np.load(patient[self.gt_prefix+'seg']).astype('uint8')[np.newaxis] data_shp_raw = data.shape plot_bg = data[self.cf.plot_bg_chan] if self.cf.plot_bg_chan not in self.chans else None data = data[self.chans] discarded_chans = len( [c for c in np.setdiff1d(np.arange(data_shp_raw[0]), self.chans) if c < self.cf.plot_bg_chan]) spatial_shp = data[0].shape # spatial dims need to be in order x,y,z assert spatial_shp == seg[0].shape, "spatial shape incongruence betw. data and seg" if np.any([spatial_shp[i] < ps for i, ps in enumerate(self.patch_size)]): new_shape = [np.max([spatial_shp[i], self.patch_size[i]]) for i in range(len(self.patch_size))] data = dutils.pad_nd_image(data, new_shape) # use 'return_slicer' to crop image back to original shape. seg = dutils.pad_nd_image(seg, new_shape) if plot_bg is not None: plot_bg = dutils.pad_nd_image(plot_bg, new_shape) if self.cf.dim == 3 or self.cf.merge_2D_to_3D_preds: # adds the batch dim here bc won't go through MTaugmenter out_data = data[np.newaxis] out_seg = seg[np.newaxis] if plot_bg is not None: out_plot_bg = plot_bg[np.newaxis] # data and seg shape: (1,c,x,y,z), where c=1 for seg batch_3D = {'data': out_data, 'seg': out_seg} for o in self.cf.roi_items: batch_3D[o] = np.array([patient[self.gt_prefix+o]]) converter = ConvertSegToBoundingBoxCoordinates(3, self.cf.roi_items, False, self.cf.class_specific_seg) batch_3D = converter(**batch_3D) batch_3D.update({'patient_bb_target': batch_3D['bb_target'], 'original_img_shape': out_data.shape}) for o in self.cf.roi_items: batch_3D["patient_" + o] = batch_3D[o] if self.cf.dim == 2: out_data = np.transpose(data, axes=(3, 0, 1, 2)).astype('float32') # (c,y,x,z) to (b=z,c,x,y), use z=b as batchdim out_seg = np.transpose(seg, axes=(3, 0, 1, 2)).astype('uint8') # (c,y,x,z) to (b=z,c,x,y) batch_2D = {'data': out_data, 'seg': out_seg} for o in self.cf.roi_items: batch_2D[o] = np.repeat(np.array([patient[self.gt_prefix+o]]), len(out_data), axis=0) converter = ConvertSegToBoundingBoxCoordinates(2, self.cf.roi_items, False, self.cf.class_specific_seg) batch_2D = converter(**batch_2D) if plot_bg is not None: out_plot_bg = np.transpose(plot_bg, axes=(2, 0, 1)).astype('float32') if self.cf.merge_2D_to_3D_preds: batch_2D.update({'patient_bb_target': batch_3D['patient_bb_target'], 'original_img_shape': out_data.shape}) for o in self.cf.roi_items: batch_2D["patient_" + o] = batch_3D[o] else: batch_2D.update({'patient_bb_target': batch_2D['bb_target'], 'original_img_shape': out_data.shape}) for o in self.cf.roi_items: batch_2D["patient_" + o] = batch_2D[o] out_batch = batch_3D if self.cf.dim == 3 else batch_2D out_batch.update({'pid': np.array([patient['pid']] * len(out_data))}) if self.cf.plot_bg_chan in self.chans and discarded_chans > 0: # len(self.chans[:self.cf.plot_bg_chan])<data_shp_raw[0]: assert plot_bg is None plot_bg = int(self.cf.plot_bg_chan - discarded_chans) out_plot_bg = plot_bg if plot_bg is not None: out_batch['plot_bg'] = out_plot_bg # eventual tiling into patches spatial_shp = out_batch["data"].shape[2:] if np.any([spatial_shp[ix] > self.patch_size[ix] for ix in range(len(spatial_shp))]): patient_batch = out_batch print("patientiterator produced patched batch!") patch_crop_coords_list = dutils.get_patch_crop_coords(data[0], self.patch_size) new_img_batch, new_seg_batch = [], [] for c in patch_crop_coords_list: new_img_batch.append(data[:, c[0]:c[1], c[2]:c[3], c[4]:c[5]]) seg_patch = seg[:, c[0]:c[1], c[2]: c[3], c[4]:c[5]] new_seg_batch.append(seg_patch) shps = [] for arr in new_img_batch: shps.append(arr.shape) data = np.array(new_img_batch) # (patches, c, x, y, z) seg = np.array(new_seg_batch) if self.cf.dim == 2: # all patches have z dimension 1 (slices). discard dimension data = data[..., 0] seg = seg[..., 0] patch_batch = {'data': data.astype('float32'), 'seg': seg.astype('uint8'), 'pid': np.array([patient['pid']] * data.shape[0])} for o in self.cf.roi_items: patch_batch[o] = np.repeat(np.array([patient[self.gt_prefix+o]]), len(patch_crop_coords_list), axis=0) #patient-wise (orig) batch info for putting the patches back together after prediction for o in self.cf.roi_items: patch_batch["patient_"+o] = patient_batch["patient_"+o] if self.cf.dim == 2: # this could also be named "unpatched_2d_roi_items" patch_batch["patient_" + o + "_2d"] = patient_batch[o] patch_batch['patch_crop_coords'] = np.array(patch_crop_coords_list) patch_batch['patient_bb_target'] = patient_batch['patient_bb_target'] if self.cf.dim == 2: patch_batch['patient_bb_target_2d'] = patient_batch['bb_target'] patch_batch['patient_data'] = patient_batch['data'] patch_batch['patient_seg'] = patient_batch['seg'] patch_batch['original_img_shape'] = patient_batch['original_img_shape'] if plot_bg is not None: patch_batch['patient_plot_bg'] = patient_batch['plot_bg'] converter = ConvertSegToBoundingBoxCoordinates(self.cf.dim, self.cf.roi_items, get_rois_from_seg=False, class_specific_seg=self.cf.class_specific_seg) patch_batch = converter(**patch_batch) out_batch = patch_batch self.patient_ix += 1 if self.patient_ix == len(self.dataset_pids): self.patient_ix = 0 return out_batch