def test_federated_cifar_structure(self): crop_shape = (28, 28, 3) cifar_train, cifar_test = cifar100_dataset.get_federated_datasets( train_client_batch_size=3, test_client_batch_size=5, crop_shape=crop_shape) sample_train_ds = cifar_train.create_tf_dataset_for_client( cifar_train.client_ids[0]) train_batch = next(iter(sample_train_ds)) train_batch_shape = tuple(train_batch[0].shape) self.assertEqual(train_batch_shape, (3, 28, 28, 3)) sample_test_ds = cifar_test.create_tf_dataset_for_client( cifar_test.client_ids[0]) test_batch = next(iter(sample_test_ds)) test_batch_shape = tuple(test_batch[0].shape) self.assertEqual(test_batch_shape, (5, 28, 28, 3))
def test_preprocess_applied(self, mock_load_data): if tf.config.list_logical_devices('GPU'): self.skipTest('skip GPU test') # Mock out the actual data loading from disk. Assert that the preprocessing # function is applied to the client data, and that only the ClientData # objects we desired are used. # # The correctness of the preprocessing function is tested in other tests. mock_train = mock.create_autospec(tff.simulation.ClientData) mock_test = mock.create_autospec(tff.simulation.ClientData) mock_load_data.return_value = (mock_train, mock_test) _, _ = cifar100_dataset.get_federated_datasets() mock_load_data.assert_called_once() # Assert the training and testing data are preprocessed. self.assertEqual(mock_train.mock_calls, mock.call.preprocess(mock.ANY).call_list()) self.assertEqual(mock_test.mock_calls, mock.call.preprocess(mock.ANY).call_list())
def test_raises_negative_epochs(self): with self.assertRaisesRegex( ValueError, 'client_epochs_per_round must be a positive integer.'): cifar100_dataset.get_federated_datasets(train_client_epochs_per_round=-1)
def test_raises_length_2_crop(self): with self.assertRaises(ValueError): cifar100_dataset.get_federated_datasets(crop_shape=(32, 32)) with self.assertRaises(ValueError): cifar100_dataset.get_centralized_datasets(crop_shape=(32, 32))
def run_federated( iterative_process_builder: Callable[..., tff.templates.IterativeProcess], client_epochs_per_round: int, client_batch_size: int, clients_per_round: int, client_datasets_random_seed: Optional[int] = None, crop_size: Optional[int] = 24, total_rounds: Optional[int] = 1500, experiment_name: Optional[str] = 'federated_cifar100', root_output_dir: Optional[str] = '/tmp/fed_opt', max_eval_batches: Optional[int] = None, **kwargs): """Runs an iterative process on the CIFAR-100 classification task. This method will load and pre-process dataset and construct a model used for the task. It then uses `iterative_process_builder` to create an iterative process that it applies to the task, using `federated_research.utils.training_loop`. We assume that the iterative process has the following functional type signatures: * `initialize`: `( -> S@SERVER)` where `S` represents the server state. * `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S` represents the server state, `{B*}` represents the client datasets, and `T` represents a python `Mapping` object. The iterative process must also have a callable attribute `get_model_weights` that takes as input the state of the iterative process, and returns a `tff.learning.ModelWeights` object. Args: iterative_process_builder: A function that accepts a no-arg `model_fn`, and returns a `tff.templates.IterativeProcess`. The `model_fn` must return a `tff.learning.Model`. client_epochs_per_round: An integer representing the number of epochs of training performed per client in each training round. client_batch_size: An integer representing the batch size used on clients. clients_per_round: An integer representing the number of clients participating in each round. client_datasets_random_seed: An optional int used to seed which clients are sampled at each round. If `None`, no seed is used. crop_size: An optional integer representing the resulting size of input images after preprocessing. total_rounds: The number of federated training rounds. experiment_name: The name of the experiment being run. This will be appended to the `root_output_dir` for purposes of writing outputs. root_output_dir: The name of the root output directory for writing experiment outputs. max_eval_batches: If set to a positive integer, evaluation datasets are capped to at most that many batches. If set to None or a nonpositive integer, the full evaluation datasets are used. **kwargs: Additional arguments configuring the training loop. For details on supported arguments, see `federated_research/utils/training_utils.py`. """ crop_shape = (crop_size, crop_size, 3) cifar_train, _ = cifar100_dataset.get_federated_datasets( train_client_epochs_per_round=client_epochs_per_round, train_client_batch_size=client_batch_size, crop_shape=crop_shape) _, cifar_test = cifar100_dataset.get_centralized_datasets( train_batch_size=client_batch_size, crop_shape=crop_shape) if max_eval_batches and max_eval_batches >= 1: cifar_test = cifar_test.take(max_eval_batches) input_spec = cifar_train.create_tf_dataset_for_client( cifar_train.client_ids[0]).element_spec model_builder = functools.partial( resnet_models.create_resnet18, input_shape=crop_shape, num_classes=NUM_CLASSES) loss_builder = tf.keras.losses.SparseCategoricalCrossentropy metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()] def tff_model_fn() -> tff.learning.Model: return tff.learning.from_keras_model( keras_model=model_builder(), input_spec=input_spec, loss=loss_builder(), metrics=metrics_builder()) training_process = iterative_process_builder(tff_model_fn) client_datasets_fn = training_utils.build_client_datasets_fn( dataset=cifar_train, clients_per_round=clients_per_round, random_seed=client_datasets_random_seed) evaluate_fn = training_utils.build_centralized_evaluate_fn( eval_dataset=cifar_test, model_builder=model_builder, loss_builder=loss_builder, metrics_builder=metrics_builder) logging.info('Training model:') logging.info(model_builder().summary()) training_loop.run( iterative_process=training_process, client_datasets_fn=client_datasets_fn, validation_fn=evaluate_fn, test_fn=evaluate_fn, total_rounds=total_rounds, experiment_name=experiment_name, root_output_dir=root_output_dir, **kwargs)