コード例 #1
0
ファイル: feat_15.py プロジェクト: mhfwx/rbmk
def stat_feat_15(security_symbol, start_date, end_date, thrd=-0.001, interval=None, conn=None):
    conn = connect_to_db() if conn is None else conn
    df = download_data_daily(conn, security_symbol, start_date, end_date)
    features = feature_extraction_fallraise(df)
    pos_cnt = 0
    neg_cnt = 0
    pos = 0
    neg = 0
    expp_list = list()
    for index, row in features.iterrows():
        if row['lr02'] < row['lr01'] < thrd:
            if row['lr0'] > 0.000:
                pos_cnt += 1
                pos += row['lr0']
            elif row['lr0'] < -0.000:
                neg_cnt += 1
                neg += row['lr0']
            if interval is not None and pos_cnt + neg_cnt >= interval:
                exp_p = (pos + neg) / (pos_cnt + neg_cnt)
                expp_list.append(round(100*exp_p, 2))
                pos_cnt = 0
                neg_cnt = 0
                pos = 0
                neg = 0
    if interval is None:
        exp_p = (pos + neg)/(pos_cnt + neg_cnt)
        print(f"corr: {pos_cnt} with expected return {round(100*pos/pos_cnt, 2)}%, wrong: {neg_cnt} with expected return "
              f"{round(100*neg/neg_cnt, 2)}%, Strategy Total Expected Return {round(100*exp_p, 2)}%")
    else:
        print(expp_list)
コード例 #2
0
ファイル: feat_15.py プロジェクト: mhfwx/rbmk
def dist_feat_15(security_symbol, start_date, end_date, thrd=-0.001, conn=None):
    conn = connect_to_db() if conn is None else conn
    df = download_data_daily(conn, security_symbol, start_date, end_date)
    features = feature_extraction_fallraise(df)
    features_ss = features.loc[(features['lr01'] < thrd) & (features['lr02'] < features['lr01'])]
    print(f"Mean: {features_ss['lr0'].mean()}, Sigma: {features_ss['lr0'].std()}")
    # print(features_ss)
    features_ss.hist(column='lr0', bins=500)
    plt.show()
コード例 #3
0
ファイル: feat_14.py プロジェクト: mhfwx/rbmk
def stat_feat_14(security_symbol,
                 start_date,
                 end_date,
                 thrd=-0.001,
                 interval=None,
                 conn=None):
    conn = connect_to_db() if conn is None else conn
    df = download_data_daily(conn, security_symbol, start_date, end_date)
    features = feature_extraction_fallraise(df)
    pos_cnt = 0
    neg_cnt = 0
    pos = 0
    neg = 0
    expp_list = list()
    triggers = list()
    for index, row in features.iterrows():
        if row['lr01'] < row['lr0'] < thrd and row['close_price'] < row[
                'vwap_ma_3']:
            if row['lr5-5'] > 0.000:
                pos_cnt += 1
                pos += row['lr5-5']
                ann = {
                    'x': row['date_key_int'],
                    'y': row['high_price'],
                    'text': round(row['lr5-5'], 2)
                }
                triggers.append(ann)
            elif row['lr5-5'] < -0.000:
                neg_cnt += 1
                neg += row['lr5-5']
                ann = {
                    'x': row['date_key_int'],
                    'y': row['high_price'],
                    'text': round(row['lr5-5'], 2)
                }
                triggers.append(ann)
            if interval is not None and pos_cnt + neg_cnt >= interval:
                exp_p = (pos + neg) / (pos_cnt + neg_cnt)
                expp_list.append(round(100 * exp_p, 2))
                pos_cnt = 0
                neg_cnt = 0
                pos = 0
                neg = 0
    if interval is None and (pos_cnt + neg_cnt) > 0:
        exp_p = (pos + neg) / (pos_cnt + neg_cnt)
        pos_rate = round(100 * pos / pos_cnt, 2) if pos_cnt > 0 else "N/A"
        neg_rate = round(100 * neg / neg_cnt, 2) if neg_cnt > 0 else "N/A"
        print(
            f"corr: {pos_cnt} with expected return {pos_rate}%, wrong: {neg_cnt} with expected return "
            f"{neg_rate}%, Strategy Total Expected Return {round(100 * exp_p, 2)}%"
        )
        return exp_p, triggers
    else:
        print(expp_list)
        print(features.iloc[-1]['date_key_int'])
        return expp_list, triggers
コード例 #4
0
ファイル: visualization.py プロジェクト: mhfwx/rbmk
def candle_stick_daily(security_symbol,
                       start_date,
                       end_date,
                       conn=None,
                       df=None,
                       annotations=None):
    """
    :param security_symbol:
    :param start_date:
    :param end_date:
    :param conn:
    :param df:
    :param annotations: [{'x': date_key_int, 'y': high_price, 'text': 'falling?'}]
    :return:
    """
    def __update_annotations(fig, anns):
        if anns is not None:
            for ann in anns:
                fig.add_annotation(x=pd.to_datetime(str(ann['x']),
                                                    format='%Y%m%d'),
                                   y=ann['y'],
                                   text=ann['text'])
            fig.update_annotations(
                dict(xref="x",
                     yref="y",
                     showarrow=True,
                     arrowhead=7,
                     ax=0,
                     ay=-40))
        return True

    if df is None:
        conn = connect_to_db() if conn is None else conn
        df = download_data_daily(conn, security_symbol, start_date, end_date)
        df['date_key'] = df['date_key_int'].apply(
            lambda x: pd.to_datetime(str(x), format='%Y%m%d'))

    print(f"plotting chart for {security_symbol} ...")
    fig = go.Figure(data=[
        go.Candlestick(x=df['date_key'],
                       open=df['open_price'],
                       high=df['high_price'],
                       low=df['low_price'],
                       close=df['close_price'],
                       name="Candle Stick")
    ])
    __update_annotations(fig, annotations)

    fig.update_layout(title=f'Daily Price Visualization',
                      yaxis_title=f'{security_symbol} Stock')
    fig.show()
コード例 #5
0
ファイル: log_return_daily.py プロジェクト: mhfwx/rbmk
def show_all_fallraise(security_symbol,
                       start_date,
                       end_date,
                       f_thd=-0.01,
                       r_thd=0.02,
                       conn=None):
    conn = connect_to_db() if conn is None else conn
    df = download_data_daily(conn, security_symbol, start_date, end_date)
    df = log_return(df)
    signals = get_falls_raises(df, falls_thd=f_thd, raises_thd=r_thd)
    signals['raises'].extend(signals['falls'])
    print(len(signals['raises']), len(signals['falls']))
    candle_stick_daily(security_symbol,
                       start_date,
                       end_date,
                       conn,
                       annotations=signals['raises'])
コード例 #6
0
ファイル: log_return_daily.py プロジェクト: mhfwx/rbmk
def rank_performances(file_name, start_date, end_date):
    """

    :param file_name:
    :param start_date:
    :param end_date:
    :return:
    """

    # take second element for sort
    def __take_second(elem):
        return elem[1]

    secs = read_sec_list(file_name)
    conn = connect_to_db()
    results = list()
    for sec in secs:
        df = download_data_daily(conn, sec, start_date, end_date)
        perf = get_performance_log_return(df)
        results.append([sec, perf['mean'], perf['std']])
    results.sort(key=__take_second)
    for each in results:
        print(each)
コード例 #7
0
ファイル: statistics_modeling.py プロジェクト: mhfwx/rbmk
from analytics import stat_feat_14, dist_feat_14, stat_feat_15, dist_feat_15, stat_m21, dist_m21, compare_hl_oc_dists
from utils.db_util import connect_to_db, download_data_daily
from utils.helpers import read_sec_list
from utils.visualization import candle_stick_daily

if __name__ == '__main__':
    conn = connect_to_db()
    securities = read_sec_list("sec_list.csv")

    for sec in securities:
        print(f"evaluating {sec}")
        df = download_data_daily(conn, sec, 20170101, 20200601)
        mean_hl, mean_oc, sigma_hl, sigma_oc = compare_hl_oc_dists(
            df_candle=df)
        print(
            f"mean_hl: {round(100*mean_hl, 2)}%, mean_oc: {round(100*mean_oc, 2)}%,"
            f" sigma_hl: {round(100*sigma_hl, 2)}%, sigma_oc: {round(100*sigma_oc, 2)}%"
        )
        input()
        # stat_m21(sec, 20170101, 20200520, thrd=-0.01, interval=None, conn=conn)
        # dist_feat_14("USMV", 20130101, 20200520, conn=conn)
    # stat, ann = stat_feat_14("SDOW", 20130601, 20200601, thrd=-0.001, interval=None, conn=conn)
    # stat_m21("TQQQ", 20130601, 20200601, thrd=-0.001, interval=None, conn=conn)
    # candle_stick_daily("SDOW", 20130610, 20200601, annotations=ann)