コード例 #1
0
def set_experiment_complete(experiment_id):
    """
    """
    sql = f'''
    UPDATE experiment
    SET "status"='COMPLETED'
    WHERE id='{experiment_id}'
    '''

    query(sql)
コード例 #2
0
def set_experiment_failed(experiment_id):
    """
    """
    sql = f'''
    UPDATE experiment
    SET "status"='STOPPED'
    WHERE id='{experiment_id}'
    '''

    query(sql)
コード例 #3
0
def remove_orphan_evals():
    """
    removes evaluations that don't have an output
    """
    sql = '''
    DELETE FROM study_evaluation
    WHERE "modelOutput" is NULL
    '''

    query(sql)
    print('cleaned orphan evals')
コード例 #4
0
def remove_orphan_studies():
    """
    removes studies that don't have a type
    """

    sql = '''
    DELETE FROM study
    WHERE type is NULL
    '''

    query(sql)
    print('cleaned orphan studies')
コード例 #5
0
def remove_study_by_id(orthanc_id: str):
    """
    Removes a study from the db by its orthanc ID

    Args:
        orthanc_id (str): the study id of the orthanc study
    """
    sql = f'''
    DELETE FROM study
    WHERE "orthancStudyId"='{orthanc_id}'
    '''

    query(sql)
コード例 #6
0
def stop_all_models():
    """
    sets a model as quickstarted

    Args:
        model_ids (List[int]): the models to mark as quick started
    """

    sql = f'''
    UPDATE model
    SET "running"=false
    '''

    query(sql)
コード例 #7
0
def fail_classifer(study_id: int):
    """
    Updates study evalutation status to failed

    Args:
        eval_id: the db id of the failed evaluation
    """

    sql = f'''
    UPDATE study 
    SET failed=true
    WHERE "orthancStudyId"='{study_id}'
    '''

    query(sql)
コード例 #8
0
def mark_model_as_stopped(model_id):
    """
    sets a model as quickstarted

    Args:
        model_ids (List[int]): the models to mark as quick started
    """

    sql = f'''
    UPDATE model
    SET "running"=false
    WHERE id = {model_id}
    '''

    query(sql)
コード例 #9
0
def mark_models_as_quickstarted(model_ids):
    """
    sets a model as quickstarted

    Args:
        model_ids (List[int]): the models to mark as quick started
    """

    sql = f'''
    UPDATE model
    SET "running"=true
    WHERE "id" in ({join_for_in_clause(model_ids)})
    '''

    query(sql)
コード例 #10
0
def fail_eval(eval_id: int):
    """
    Updates study evalutation status to failed

    Args:
        eval_id (int): the db id of the study evaluation
    """

    sql = f'''
    UPDATE study_evaluation 
    SET status='FAILED'
    WHERE id={eval_id}
    '''

    query(sql)
コード例 #11
0
def add_stdout_to_eval(eval_ids: List[int], lines: List[str]):
    studies = get_study_evals(eval_ids)

    stdout = []

    if studies[0]['stdout'] is not None:
        stdout = studies[0]['stdout']

    stdout = stdout + lines
    sql = f'''
    UPDATE study_evaluation
    SET stdout=(%s)
    WHERE id in ({join_for_in_clause(eval_ids)})
    '''

    query(sql, json.dumps(stdout))
コード例 #12
0
ファイル: test_db_utils.py プロジェクト: mentii/mentii
    def test_query(self):
        print("Running query test")
        self.assertIsNotNone(self.table)
        self.assertEqual(self.table.table_status, "ACTIVE")

        response = db.query("email", "*****@*****.**", self.table)
        self.assertEqual(response.get("Count"), 1)
        self.assertEqual(
            response.get("Items")[0].get("email"), "*****@*****.**")
コード例 #13
0
def save_patient_id(patient_id: str, orthanc_id: str, modality: str,
                    study_uid: str, series_uid: str):
    """
    Saves a patient id to the database for a study

    Args:
        patient_id (str): the patient id from orthanc
        orthanc_id (str): the study id from orthanc
        modality (str): the study id from orthanc
        study_uid (str): the study uid from the dicom
    """

    sql = f'''
    UPDATE study
    SET "patientId"='{patient_id}', modality='{modality}', "studyUid"='{study_uid}', "seriesUid"='{series_uid}'
    WHERE "orthancStudyId"='{orthanc_id}'
    '''

    query(sql)
コード例 #14
0
def save_study_type(orthanc_id: str, study_type: str) -> Dict:
    """
    Saves a study to the database with it accompanying type

    Args:
        orthanc_id (str): the study ID from orthanc
        study_type (str): the type of the study (e.g. Frontal_CXR)

    Returns:
        Dict: the inserted study
    """

    sql = f'''
    UPDATE study
    SET type='{study_type}'
    WHERE "orthancStudyId"='{orthanc_id}'
    '''

    query(sql)
コード例 #15
0
def restart_failed_evals(eval_ids: List[int]):
    """
    sets a failed evaluation to status 'RUNNING' to restart it

    Args:
        eval_ids (List[int]): a list of the ids of evals to be restarted
    """

    if len(eval_ids) == 0:
        return

    # join ids by , so that it can be used in WHERE ... IN clause
    ids = ','.join([str(eval_id) for eval_id in eval_ids])

    sql = f'''
    UPDATE study_evaluation
    SET status='RUNNING'
    WHERE id in ({ids})
    '''

    query(sql)
コード例 #16
0
def update_eval_status_and_save(output: ModelOutput, eval_id: int):
    """
    Updates study evalutation status to completed and saves the model output

    Args:
        output (ModelOutput): the output of the model
        eval_id (int): the id of the eval to be update
    """

    # checks output to see if it output an image and adds imgOutputPath to SQL string
    update_sql_string = ''
    if output['image']:
        img_path = output['image']
        update_sql_string = f', "imgOutputPath"=\'{img_path}\''

    ### set eval as completed and save model output as json
    sql = f'''
    UPDATE study_evaluation 
    SET status='COMPLETED', "modelOutput"=('{json.dumps(output)}') {update_sql_string}
    WHERE id={eval_id}
    '''

    query(sql)
axes.set_axis_bgcolor('white')
#
axes.yaxis.label.set_size(22)
axes.xaxis.label.set_size(22)

city = "pisa"
dow = "wd"
hours = 5
# method = "krandomtraj"
# method = "fullrandtraj"
method = "distrandtraj"

query_tsd = queries.create_tsd_from_table("(select * from " + method + "." + city + "_" + str(hours) + "h_" + dow + " ) a")
query_tsd_original = queries.create_tsd(city, dow, hours)

dist_tsd = dist.compute_probability_distribution(db_utils.query(query_tsd), is_cum_sum=False)
dist_tsd_original = dist.compute_probability_distribution(db_utils.query(query_tsd_original), is_cum_sum=False)

print "TSD ",dist_tsd[0], dist_tsd[1]
print "TSD ORIGINAL", dist_tsd_original[0], dist_tsd_original[1]


plt.plot(dist_tsd[0], dist_tsd[1], label="Random", marker='s', markersize=5, alpha=alpha)
plt.plot(dist_tsd_original[0], dist_tsd_original[1], marker='3', markersize=5, label="Original", alpha=alpha)

plt.tick_params(axis='both', which='major', labelsize=24, colors="#000000")
plt.xlabel('x')
plt.ylabel('P')
leg = plt.legend(loc=1, prop={'size': 18})
leg.get_frame().set_facecolor("white")
#
axes.yaxis.label.set_size(22)
axes.xaxis.label.set_size(22)

city = "pisa"
dow = "wd"
hours = 5
# method = "krandomtraj"
# method = "fullrandtraj"
method = "distrandtraj"

query_tsd = queries.create_tsd_from_table("(select * from " + method + "." +
                                          city + "_" + str(hours) + "h_" +
                                          dow + " ) a")
query_tsd_original = queries.create_tsd(city, dow, hours)

dist_tsd = dist.compute_probability_distribution(db_utils.query(query_tsd),
                                                 is_cum_sum=False)
dist_tsd_original = dist.compute_probability_distribution(
    db_utils.query(query_tsd_original), is_cum_sum=False)

print "TSD ", dist_tsd[0], dist_tsd[1]
print "TSD ORIGINAL", dist_tsd_original[0], dist_tsd_original[1]

plt.plot(dist_tsd[0],
         dist_tsd[1],
         label="Random",
         marker='s',
         markersize=5,
         alpha=alpha)
plt.plot(dist_tsd_original[0],
         dist_tsd_original[1],
コード例 #19
0
def generate_random_trajectories(city, dow, hours):

    print city, dow, hours

    trajectory_result = dict()

    place_list = db.query_places(city, dow, hours)

    ################################## QUERIES ##################################

    tsd = queries.create_tsd(city, dow, hours)

    tpu = queries.create_tpu(city, dow, hours)

    ################################## END QUERIES ##################################

    # LOAD DATA
    # Compute the distributions
    n_users = db.get_number_of_users(city, dow, hours)
    n_trajectories = db.get_number_of_trajectories(city, dow, hours)
    max_trajectories_per_user = np.max(db.query(tpu)['key'])
    max_trajectory_size = np.max(db.query(tsd)['key'])

    tsd = queries.create_tsd(city, dow, hours)
    tpu = queries.create_tpu(city, dow, hours)

    trajectories_per_user_distribution = dist.compute_probability_distribution(
        db.query(tpu))

    trajectory_size_distribution = dist.compute_probability_distribution(
        db.query(tsd))

    print n_users

    n_trajs_total = 0

    u = 0

    while u < n_users and n_trajs_total < n_trajectories:
        # number of trajectories
        print "%s/%s and %s/%s" % (u, n_users, n_trajs_total, n_trajectories)
        user_trajectories = dist.random_from_probability(
            trajectories_per_user_distribution)

        # print 'User '+str(u) + ' with ' + str(n_trajectories)

        trajectories_count = 0

        today = datetime.datetime.fromtimestamp(time.time())

        trajectory_result[u] = []

        # create n trajectories
        while trajectories_count < user_trajectories and n_trajs_total < n_trajectories:

            # number of points
            n_points = dist.random_from_probability(
                trajectory_size_distribution)
            print "Traj Size ", n_points

            places_count = 0

            traj = []

            # pick n_points places
            while places_count < n_points:

                tomorrow = today + TIME_DELTA

                place = get_next_place(place_list)

                places = get_close_places(place, place_list)

                traj.append((places, today, tomorrow))

                places_count += 1

                # go forward in time
                today = tomorrow + TIME_DELTA

            trajectories_count += 1
            n_trajs_total += 1

            trajectory_result[u].append(traj)

        # user increment
        u += 1

    print "Total trajectories: %s(%s) " % (str(n_trajs_total), n_trajectories)

    table = TABLE_SCHEMA + city + "_" + str(hours) + "h_" + dow

    db.store_trajectories(trajectory_result, table)
def generate_random_trajectories(city, dow, hours):

    print city, dow, hours

    trajectory_result = dict()

    place_list = db.query_places(city, dow, hours)

    ################################## QUERIES ##################################

    tsd = queries.create_tsd(city, dow, hours)

    tpu = queries.create_tpu(city, dow, hours)

    # ted = queries.create_ted(city, dow, hours)

    ################################## END QUERIES ##################################

    # LOAD DATA
    # Compute the distributions
    n_users = db.get_number_of_users(city, dow, hours)

    trajectories_per_user_distribution = dist.compute_probability_distribution(db.query(tpu))

    trajectory_size_distribution = dist.compute_probability_distribution(db.query(tsd))
    print "Trajectory Size Distri ", trajectory_size_distribution

    trajectory_extent_distribution = dist.compute_probability_density_function(db.query_trajectory_extent( city, dow, hours ))
    print "Trajectory Extent Dist ", trajectory_extent_distribution

    print "N of users:", n_users

    n_trajs_total = 0

    for u in range(0, n_users):
        # number of trajectories

        n_trajectories = dist.random_from_probability(trajectories_per_user_distribution)

        print 'User ' + str(u) + ' with ' + str(n_trajectories)

        trajectories_count = 0

        trajectory_result[u] = []

        # create n trajectories
        # TODO melhorar a criacao das trajetorias para satisfazer a distribuicao de extent
        while trajectories_count < n_trajectories:

            today = datetime.datetime.fromtimestamp(time.time())

            aux = dist.random_from_probability_2(trajectory_size_distribution, trajectory_extent_distribution)
            n_points = aux[0]
            extent = aux[1]

            # # number of points
            # n_points = dist.random_from_probability(trajectory_size_distribution)
            #
            # # extent of the trajectory
            # extent = dist.random_from_probability(trajectory_extent_distribution)

            # print "Generating Traj ", trajectories_count+1, extent
            traj = generate_trajectory(n_points, extent, place_list, today)

            trajectories_count += 1

            n_trajs_total += 1

            # print "Generated Traj ", utils.compute_trajectory_extent(traj)
            trajectory_result[u].append(traj)

    max_extent = np.max(trajectory_extent_distribution[0])
    max_points = np.max(trajectory_size_distribution[0])
    print max_extent

    today = datetime.datetime.fromtimestamp(time.time())

    traj = generate_trajectory(max_points, max_extent, place_list, today)
    print "Generated Traj ", utils.compute_trajectory_extent(traj)

    trajectory_result[n_users] = [traj]
    n_trajs_total += 1

    print "Total trajectories: " + str(n_trajs_total)

    table = TABLE_SCHEMA + city + "_" + str(hours)  +"h_" + dow

    db.store_trajectories(trajectory_result, table)
def generate_random_trajectories(city, dow, hours):

    print city, dow, hours

    trajectory_result = dict()

    place_list = db.query_places(city, dow, hours)

    ################################## QUERIES ##################################

    tsd = queries.create_tsd(city, dow, hours)

    tpu = queries.create_tpu(city, dow, hours)

    ################################## END QUERIES ##################################

    # LOAD DATA
    # Compute the distributions
    n_users = db.get_number_of_users(city, dow, hours)
    n_trajectories = db.get_number_of_trajectories(city, dow, hours)
    max_trajectories_per_user = np.max(db.query(tpu)['key'])
    max_trajectory_size = np.max(db.query(tsd)['key'])

    tsd = queries.create_tsd(city, dow, hours)
    tpu = queries.create_tpu(city, dow, hours)

    trajectories_per_user_distribution = dist.compute_probability_distribution(db.query(tpu))

    trajectory_size_distribution = dist.compute_probability_distribution(db.query(tsd))

    print n_users

    n_trajs_total = 0

    u = 0

    while u < n_users and n_trajs_total < n_trajectories:
        # number of trajectories
        print "%s/%s and %s/%s" % (u, n_users, n_trajs_total, n_trajectories)
        user_trajectories = dist.random_from_probability(trajectories_per_user_distribution)

        # print 'User '+str(u) + ' with ' + str(n_trajectories)

        trajectories_count = 0

        today = datetime.datetime.fromtimestamp(time.time())

        trajectory_result[u] = []

        # create n trajectories
        while trajectories_count < user_trajectories and n_trajs_total < n_trajectories:

            # number of points
            n_points = dist.random_from_probability(trajectory_size_distribution)
            print "Traj Size ", n_points

            places_count = 0

            traj = []

            # pick n_points places
            while places_count < n_points:

                tomorrow = today + TIME_DELTA

                place = get_next_place(place_list)

                places = get_close_places(place, place_list)

                traj.append((places, today, tomorrow))

                places_count += 1

                # go forward in time
                today = tomorrow + TIME_DELTA

            trajectories_count += 1
            n_trajs_total += 1

            trajectory_result[u].append(traj)

        # user increment
        u += 1

    print "Total trajectories: %s(%s) " % (str(n_trajs_total), n_trajectories)

    table = TABLE_SCHEMA+city+"_"+str(hours)+"h_"+dow

    db.store_trajectories(trajectory_result, table)