コード例 #1
0
import scipy.sparse as sps
from scripts.scikit_ensemble.scikit_ensamble import Optimizer
from utils.definitions import *
from utils.datareader import Datareader

cat = 5

matrix = list()
from utils.definitions import load_obj
name = load_obj("name")
directory = ROOT_DIR + "/scripts/scikit_ensemble/offline/"
matrix_dict = load_obj("matrix_dict", path="")

m = list()
for n in name[cat-1]:
    m.append(sps.load_npz(directory + matrix_dict[n]))
matrix.append(m)

dr = Datareader(verbose=False, mode = "offline", only_load="False")

opt = Optimizer(matrices_array=matrix[0], matrices_names=name[cat-1],
                dr=dr, cat=cat, start=0, end=1)
del matrix

opt.run()
コード例 #2
0
import itertools


def flatten(L):
    return list(set([val for sublist in L for val in sublist]))


def reorder(dict, order):
    assert len(dict) == len(order)
    ret = [dict[k] for k in order]
    return ret


if __name__ == '__main__':

    name = load_obj("name")
    mode = "online"
    type = "unique"

    print("[ Initizalizing Datereader ]")
    dr = Datareader(verbose=False, mode=mode, only_load="False")
    directory = ROOT_DIR + "/scripts/scikit_ensemble/" + mode + "/"
    w = []
    print("[ Loading weights ]")
    for i in range(1, 11):
        arg = load_obj("best/cat" + str(i) + "")
        w.append(reorder(dict(arg[:len(arg) - 1][0]), name[i - 1]))

    print("[ Loading matrix name ]")
    if mode == "offline":
        matrix_dict = load_obj("matrix_dict", path="")
コード例 #3
0
    best_score = 0
    best_params = []
    verbose = True
    calls_constant = 60

    start_index = (cat-1)*1000
    end_index = cat*1000
    global_counter=0

    x0 = None
    y0 = None

    if os.path.isfile(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/memory/cat'+ str(cat)+'_y0_MEMORY.pkl') and \
            os.path.isfile(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/memory/cat' + str(cat) + '_x0_MEMORY.pkl'):
        x0 = load_obj('cat' + str(cat) + '_x0_MEMORY', path= ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/memory/')
        y0 = load_obj('cat' + str(cat) + '_y0_MEMORY', path= ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/memory/')
        global_counter = len(y0)
        print("[ CAT"+str(cat)+" : RESUMING FROM RUN", global_counter, "]")

    print("[ CAT "+str(cat)+": STARTING, NOW LOADING MATRICES ]")
    matrices_names = read_params_dict(ROOT_DIR+'/bayesian_scikit/'+configuration_name+'/name_settings')[cat-1]
    file_locations = read_params_dict(ROOT_DIR+'/bayesian_scikit/bayesian_common_files/file_locations_offline')

    matrices_array = [norm( eurm_remove_seed( sps.load_npz(file_locations[x]), dr)[start_index:end_index]) for x in matrices_names ]

    del dr
    start_time=time.time()

    space  = [Real(0, 100, name=x) for x in matrices_names]
    res = gp_minimize(objective_function,  space,
コード例 #4
0
import os, sys
from utils.definitions import ROOT_DIR, load_obj

configuration_name = sys.argv[1]


print("cat 1 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(1)+'_params_dict'))

print("cat 2 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(2)+'_params_dict'))

print("cat 3 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(3)+'_params_dict'))

print("cat 4 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(4)+'_params_dict'))

print("cat 5 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(5)+'_params_dict'))

print("cat 6 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(6)+'_params_dict'))

print("cat 7 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(7)+'_params_dict'))

print("cat 8 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(8)+'_params_dict'))

print("cat 9 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(9)+'_params_dict'))

print("cat 10 ",load_obj(ROOT_DIR + '/bayesian_scikit/' + configuration_name + '/best_params/cat'+str(10)+'_params_dict'))