def main(): args = parse_args() if args.category_num <= 0: raise SystemExit('Bad category_num: %d!' % args.category_num) cam = Camera(args) cam.open() if not cam.is_opened: sys.exit('Failed to open camera!') cls_dict = get_cls_dict(args.category_num) yolo_dim = int(args.model.split('-')[-1]) if yolo_dim not in (288, 416, 608): raise SystemExit('Bad yolo_dim: %d!\nPlease make sure the model file name contains the correct dimension...' % yolo_dim) trt_yolov3 = TrtYOLOv3(args.model, (yolo_dim, yolo_dim), args.category_num) cam.start() open_window(WINDOW_NAME, args.image_width, args.image_height, 'Camera TensorRT YOLOv3 Demo') vis = BBoxVisualization(cls_dict) loop_and_detect(cam, trt_yolov3, conf_th=0.3, vis=vis) cam.stop() cam.release() cv2.destroyAllWindows()
def main(): global THREAD_RUNNING cuda.init() # init pycuda driver args = parse_args() cap = open_cam_rtsp(args.cam_name, args.cam_password, args.cam_ip) if not cap.isOpened(): sys.exit('Failed to open camera!') #抓取图像子进程 THREAD_RUNNING = True th = threading.Thread(target=grab_img, args=(cap, )) th.start() #目标识别 cls_dict = get_cls_dict(args.model.split('_')[-1]) open_window(WINDOW_NAME, args.image_width, args.image_height, 'Camera TensorRT SSD Demo for Jetson Nano') vis = BBoxVisualization(cls_dict) condition = threading.Condition() global IMG_HANDLE trt_thread = TrtThread(condition, IMG_HANDLE, args.model, conf_th=0.3) trt_thread.start() # start the child thread loop_and_display(condition, vis) trt_thread.stop() # stop the child thread #关闭图像子进程 THREAD_RUNNING = False th.join() cap.release() cv2.destroyAllWindows()
def main(): args = parse_args() #YOLO INIT #cls_dict = get_cls_dict('coco') cls_dict = get_cls_dict('deepfamily') print("classes count : ", len(cls_dict)) yolo_dim = int(args.model.split('-')[-1]) # 416 or 608 print("yolo_dim : ", yolo_dim) trt_yolov3 = TrtYOLOv3(args.model, (yolo_dim, yolo_dim)) #CAMERA cam = Camera(args) cam.open() if not cam.is_opened: sys.exit('Failed to open camera!') cam.start() #CAM-WINDOW open_window(WINDOW_NAME, args.image_width, args.image_height, 'DEEPFAMILY PROJECT - TensorRT YOLOv3') vis = BBoxVisualization(cls_dict) #DETECT-LOOP loop_and_detect(cam, trt_yolov3, conf_th=0.95, vis=vis) #loop_and_detect(cam, trt_yolov3, conf_th=0.95) cam.stop() cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() cam = Camera(args) cam.open() if not cam.is_opened: sys.exit('Failed to open camera!') cls_dict = get_cls_dict(args.model) trt_ssd = TrtSSD(args.model, INPUT_HW) cam.start() if args.use_console: loop_and_detect_console(cam, trt_ssd, conf_th=0.3, loop=args.loop, cls_dict=cls_dict) else: open_window(WINDOW_NAME, args.image_width, args.image_height, 'Camera TensorRT SSD Demo for Jetson Nano') vis = BBoxVisualization(cls_dict) loop_and_detect(cam, trt_ssd, conf_th=0.3, vis=vis) cam.stop() cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() if args.category_num <= 0: raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num) if not os.path.isfile('yolo/%s.trt' % args.model): raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model) cam = Camera(args) if not cam.isOpened(): raise SystemExit('ERROR: failed to open camera!') cls_dict = get_cls_dict(args.category_num) vis = BBoxVisualization(cls_dict) h, w = get_input_shape(args.model) trt_yolo = TrtYOLO(args.model, (h, w), args.category_num, args.letter_box) open_window(WINDOW_NAME, 'Camera TensorRT YOLO Demo', cam.img_width, cam.img_height) msg_queue = Queue(maxsize=100) # msg_queue.put("0,0,0,-1".encode()) Thread(target=serArd, args=(msg_queue, )).start() loop_and_detect(cam, trt_yolo, msg_queue, conf_th=0.7, vis=vis) while True: pass cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() if args.category_num <= 0: raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num) if not os.path.isfile('yolo/%s.trt' % args.model): raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model) cam = Camera(args) if not cam.isOpened(): raise SystemExit('ERROR: failed to open camera!') cls_dict = get_cls_dict(args.category_num) yolo_dim = args.model.split('-')[-1] if 'x' in yolo_dim: dim_split = yolo_dim.split('x') if len(dim_split) != 2: raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim) w, h = int(dim_split[0]), int(dim_split[1]) else: h = w = int(yolo_dim) if h % 32 != 0 or w % 32 != 0: raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim) trt_yolo = TrtYOLO(args.model, (h, w), args.category_num) open_window(WINDOW_NAME, 'Camera TensorRT YOLO Demo', 640, 480) vis = BBoxVisualization(cls_dict) loop_and_detect(cam, trt_yolo, conf_th=0.3, vis=vis) cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() if args.category_num <= 0: raise SystemExit(f'ERROR: bad category_num ({args.category_num})!') if not os.path.isfile(args.model): raise SystemExit(f'ERROR: file {args.model} not found!') # Process valid coco json file process_valid_json(args.valid_coco) if args.write_images: if not os.path.exists(args.image_output): os.mkdir(args.image_output) # Create camera for video/image input cam = Camera(args) if not cam.get_is_opened(): raise SystemExit('ERROR: failed to open camera!') class_dict = get_cls_dict(args.category_num) yolo_dim = (args.model.replace(".trt", "")).split('-')[-1] if 'x' in yolo_dim: dim_split = yolo_dim.split('x') if len(dim_split) != 2: raise SystemExit(f'ERROR: bad yolo_dim ({yolo_dim})!') w, h = int(dim_split[0]), int(dim_split[1]) else: h = w = int(yolo_dim) if h % 32 != 0 or w % 32 != 0: raise SystemExit(f'ERROR: bad yolo_dim ({yolo_dim})!') # Create yolo trt_yolo = TrtYOLO(args.model, (h, w), args.category_num) if args.activate_display: open_window(WINDOW_NAME, 'Camera TensorRT YOLO Demo', cam.img_width, cam.img_height) visual = BBoxVisualization(class_dict) # Run detection loop_and_detect(cam, trt_yolo, args, confidence_thresh=args.confidence_threshold, visual=visual) # Clean up cam.release() if args.activate_display: cv2.destroyAllWindows()
def main(): args = parse_args() cam = Camera(args) if not cam.get_is_opened(): raise SystemExit('ERROR: failed to open camera!') mtcnn = TrtMtcnn() open_window( WINDOW_NAME, 'Camera TensorRT MTCNN Demo for Jetson Nano', cam.img_width, cam.img_height) loop_and_detect(cam, mtcnn, args.minsize) cam.release() cv2.destroyAllWindows()
def main(): # Parse arguments and get input args = parse_args() cam = Camera(args) if not cam.isOpened(): raise SystemExit('ERROR: failed to open camera!') # Create NN1 and NN2 models and load into memory cls_dict = get_cls_dict(args.model.split('_')[-1]) trt_ssd = TrtSSD(args.model, INPUT_HW) mtcnn = TrtMtcnn() # Create Preview Window open_window(WINDOW_NAME, 'Camera Preview', cam.img_width, cam.img_height) vis = BBoxVisualization(cls_dict) # Enter Detection Mode while True: # Get Image img = cam.read() out.write(img) nn1_results = [] # Run Neural Networks img, nn1_results, nn2_results, nn3_results = loop_and_detect( img, mtcnn, args.minsize, trt_ssd, conf_th=0.3, vis=vis) # Communicate to Arduino if (nn1_results != []): img = robot_drive(img, nn1_results) else: serial_port.write("N".encode()) print("N") # Display and save output cv2.imshow(WINDOW_NAME, img) outNN.write(img) # User/Keyboard Input key = cv2.waitKey(1) if key == ord('q'): out.release() outNN.release() break # Clean up and exit cam.release() cv2.destroyAllWindows() serial_port.close()
def main(): args = parse_args() cam = Camera(args) if not cam.get_is_opened(): raise SystemExit('ERROR: failed to open camera!') cls_dict = get_cls_dict(args.model.split('_')[-1]) trt_ssd = TrtSSD(args.model, INPUT_HW) open_window(WINDOW_NAME, 'Camera TensorRT SSD Demo', cam.img_width, cam.img_height) vis = BBoxVisualization(cls_dict) loop_and_detect(cam, trt_ssd, conf_th=0.3, vis=vis) cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() labels = np.loadtxt('googlenet/synset_words.txt', str, delimiter='\t') cam = Camera(args) if not cam.get_is_opened(): raise SystemExit('ERROR: failed to open camera!') # initialize the tensorrt googlenet engine net = PyTrtGooglenet(DEPLOY_ENGINE, ENGINE_SHAPE0, ENGINE_SHAPE1) open_window(WINDOW_NAME, 'Camera TensorRT GoogLeNet Demo', cam.img_width, cam.img_height) loop_and_classify(cam, net, labels, args.crop_center) cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() cam = Camera(args) cam.open() if not cam.is_opened: sys.exit('Failed to open camera!') mtcnn = TrtMtcnn() cam.start() open_window(WINDOW_NAME, width=640, height=480, title='MTCNN Window') detect_faces(cam, mtcnn) cam.stop() cam.release() cv2.destroyAllWindows() del mtcnn
def main(): args = parse_args() labels = np.loadtxt('googlenet/synset_words.txt', str, delimiter='\t') cam = Camera(args) if not cam.isOpened(): raise SystemExit('ERROR: failed to open camera!') open_window(WINDOW_NAME, 'Camera TensorRT GoogLeNet Demo', cam.img_width, cam.img_height) condition = threading.Condition() trt_thread = TrtGooglenetThread(condition, cam, labels, args.crop_center) trt_thread.start() # start the child thread loop_and_display(condition) trt_thread.stop() # stop the child thread cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() cam = Camera(args) cam.open() if not cam.is_opened: sys.exit('Failed to open camera!') mtcnn = TrtMtcnn() cam.start() open_window(WINDOW_NAME, args.image_width, args.image_height, 'Camera TensorRT MTCNN Demo for Jetson TX2') loop_and_detect(cam, mtcnn, args.minsize) cam.stop() cam.release() cv2.destroyAllWindows() del (mtcnn)
def main(): args = parse_args() cam = Camera(args) cam.open() if not cam.is_opened: sys.exit('Failed to open camera!') cls_dict = get_cls_dict('coco') yolo_dim = int(args.model.split('-')[-1]) # 416 or 608 trt_yolov3 = TrtYOLOv3(args.model, (yolo_dim, yolo_dim)) cam.start() open_window(WINDOW_NAME, args.image_width, args.image_height, 'Camera TensorRT YOLOv3 Demo') vis = BBoxVisualization(cls_dict) loop_and_detect(cam, trt_yolov3, conf_th=0.3, vis=vis) cam.stop() cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() labels = np.loadtxt('googlenet/synset_words.txt', str, delimiter='\t') cam = Camera(args) cam.open() if not cam.is_opened: sys.exit('Failed to open camera!') cam.start() # let camera start grabbing frames open_window(WINDOW_NAME, args.image_width, args.image_height, 'Camera TensorRT GoogLeNet Demo for Jetson Nano') condition = threading.Condition() trt_thread = TrtGooglenetThread(condition, cam, labels, args.crop_center) trt_thread.start() # start the child thread loop_and_display(condition) trt_thread.stop() # stop the child thread cam.stop() cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() if args.category_num <= 0: raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num) if not os.path.isfile('yolo/%s.trt' % args.model): raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model) client = init_mqtt(args.host, args.port) cam = Camera(args) if not cam.isOpened(): raise SystemExit('ERROR: failed to open camera!') cls_dict = get_cls_dict(args.category_num) print("cls_dict:", cls_dict) #print(cls_dict[3]) yolo_dim = args.model.split('-')[-1] print("yolo_dim:", yolo_dim) if 'x' in yolo_dim: dim_split = yolo_dim.split('x') if len(dim_split) != 2: raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim) w, h = int(dim_split[0]), int(dim_split[1]) else: h = w = int(yolo_dim) print('w:{0}, h:{1}'.format(w, h)) if h % 32 != 0 or w % 32 != 0: raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim) trt_yolo = TrtYOLO(args.model, (h, w), args.category_num, args.letter_box) open_window(WINDOW_NAME, 'Camera TensorRT YOLO Demo', cam.img_width, cam.img_height) vis = BBoxVisualization(cls_dict) loop_and_detect(cam, trt_yolo, conf_th=0.3, vis=vis, \ cls_dict=cls_dict, client=client, topic=args.topic) cam.release() cv2.destroyAllWindows() client.disclose()
def main(): args = parse_args() if args.category_num <= 0: raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num) if not os.path.isfile('yolo/%s.trt' % args.model): raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model) cam = Camera(args) if not cam.isOpened(): raise SystemExit('ERROR: failed to open camera!') cls_dict = get_cls_dict(args.category_num) vis = BBoxVisualization(cls_dict) trt_yolo = TrtYOLO(args.model, args.category_num, args.letter_box) open_window(WINDOW_NAME, 'Camera TensorRT YOLO Demo', cam.img_width, cam.img_height) loop_and_detect(cam, trt_yolo, conf_th=0.3, vis=vis) cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() cam = Camera(args) if not cam.get_is_opened(): raise SystemExit('ERROR: failed to open camera!') cuda.init() # init pycuda driver cls_dict = get_cls_dict(args.model.split('_')[-1]) open_window(WINDOW_NAME, 'Camera TensorRT SSD Demo', cam.img_width, cam.img_height) vis = BBoxVisualization(cls_dict) condition = threading.Condition() trt_thread = TrtThread(condition, cam, args.model, conf_th=0.3) trt_thread.start() # start the child thread loop_and_display(condition, vis) trt_thread.stop() # stop the child thread cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() cam = Camera(args) is_open = up() #time.sleep(60) if is_open: cam.open() if not cam.is_opened: sys.exit('Failed to open camera!') cls_dict = get_cls_dict(args.model.split('_')[-1]) trt_ssd = TrtSSD(args.model, INPUT_HW) cam.start() open_window(WINDOW_NAME, args.image_width, args.image_height, 'Camera TensorRT SSD Demo for Jetson Nano') vis = BBoxVisualization(cls_dict) loop_and_detect(cam, trt_ssd, conf_th=0.9, vis=vis) cam.stop() cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() if not os.path.isfile('retinaface/%s.trt' % args.model): raise SystemExit('ERROR: file (retinaface/%s.trt) not found!' % args.model) cam = Camera(args) if not cam.isOpened(): raise SystemExit('ERROR: failed to open camera!') cfg = cfg_mnet input_size = args.model.split('-')[-1] input_shape = (int(input_size), int(input_size)) priorbox = PriorBox(cfg, input_shape) priors = priorbox.forward() trt_retinaface = TRT_RetinaFace(args.model, input_shape) open_window( WINDOW_NAME, 'Camera TensorRT Face Detection Demo', cam.img_width, cam.img_height) loop_and_detect(cam, trt_retinaface, priors, cfg) cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() if args.category_num <= 0: raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num) if not os.path.isfile('yolo/%s.trt' % args.model): raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model) cam = Camera(args) if not cam.isOpened(): raise SystemExit('ERROR: failed to open camera!') cls_dict = get_cls_dict(args.category_num) yolo_dim = args.model.split('-')[-1] if 'x' in yolo_dim: dim_split = yolo_dim.split('x') if len(dim_split) != 2: raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim) w, h = int(dim_split[0]), int(dim_split[1]) else: h = w = int(yolo_dim) if h % 32 != 0 or w % 32 != 0: raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim) load_weight_start = time.time() trt_yolo = TrtYOLO(args.model, (h, w), args.category_num) load_weights_time = datetime.timedelta(seconds=time.time() - load_weight_start) print('Load weights Time: %s' % (load_weights_time)) open_window(WINDOW_NAME, 'Camera TensorRT YOLO Demo', cam.img_width, cam.img_height) vis = BBoxVisualization(cls_dict) loop_and_detect(cam, trt_yolo, conf_th=0.3, vis=vis) reporter = MemReporter() reporter.report() cam.release() cv2.destroyAllWindows()
def main(): args = parse_args() cam = Camera(args) cam.open() if not cam.is_opened: sys.exit('Failed to open camera!') cls_dict = get_cls_dict(args.model.split('_')[-1]) cuda.init() # init pycuda driver cam.start() # let camera start grabbing frames open_window(WINDOW_NAME, args.image_width, args.image_height, 'Camera TensorRT SSD Demo for Jetson Nano') vis = BBoxVisualization(cls_dict) condition = threading.Condition() trt_thread = TrtThread(condition, cam, args.model, conf_th=0.3) trt_thread.start() # start the child thread loop_and_display(condition, vis) trt_thread.stop() # stop the child thread cam.stop() cam.release() cv2.destroyAllWindows()
def main(): # initialize camera class cam = Camera() if not cam.is_opened(): raise SystemExit('EROR: failed to open camera!') cls_dict = alprClassNames() # Yolo dimensions (416x416) yolo_dim = 416 h = w = int(yolo_dim) # Initialized model and tools cwd = os.getcwd() model_yolo = str(cwd) + '/weights/yolov4-tiny-416.trt' model_crnn = str(cwd) + '/weights/crnn.pth' trt_yolo = TrtYOLO(model_yolo, (h,w), category_num=1) # category number is number of classes crnn = alpr.AutoLPR(decoder='bestPath', normalise=True) crnn.load(crnn_path=model_crnn) open_window(WINDOW_NAME, TITLE, cam.img_width, cam.img_height) vis = BBoxVisualization(cls_dict) # Loop and detect full_scrn = False fps = 0.0 tic = time.time() while True: if cv2.getWindowProperty(WINDOW_NAME, 0) < 0: break img = cam.read() if img is None: break # Detect car plate boxes confs, clss = trt_yolo.detect(img, conf_th=0.5) # Crop and preprocess car plate cropped = vis.crop_plate(img, boxes, confs, clss) # Recognize car plate lp_plate = '' fileLocate = str(cwd) + '/detections/detection1.jpg' if os.path.exists(fileLocate): lp_plate = lpr.predict(fileLocate) # Draw boxes and fps img = vis.draw_bboxes(img, boxes, confs, clss, lp=lp_plate) img = show_fps(img, fps) # Show image cv2.imshow(WINDOW_NAME, img) # Calculate fps toc = time.time() curr_fps = 1.0 / (toc - tic) fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05) tic = toc # Exit key key = cv2.waitKey(1) if key == 27: # ESC key: quit program break # Release capture and destroy all windows cam.release() cv2.destroyAllWindows()