def write(): udisp.title_awesome("Resources") image = Image.open('./img/2.jfif') st.image(image, use_column_width=True) keys = {'Videos', 'Datasets', 'Articles', 'Publications', 'Citations'} pick = st.selectbox("Select An Option", list(keys)) if pick == 'Datasets': udisp.render_md("resources/datasets.md") elif pick == 'Videos': udisp.render_md("resources/videos.md") elif pick == 'Articles': udisp.render_md("resources/articles.md") elif pick == 'Publications': udisp.render_md("resources/publications.md") elif pick == 'Citations': udisp.render_md("resources/citations.md")
def write(): #st.title("Summarize URL") summaryurleng.sumurl_main("Summarize URL", "Enter or paste url in the below box") udisp.render_md("resources/summaryurl2.md") udisp.render_md("resources/summaryurl.md") # if st.checkbox("Show help document"): # st.code(udisp.render_md("resources/summaryurl.md"))
def write(): udisp.title_awesome("3D Photo Creator") video_keys = globalDefine.SAMPLE_VIDEO_LIST.keys() video_id = st.selectbox("Select a sample 3D video output ", list(video_keys)) video_choice = globalDefine.SAMPLE_VIDEO_LIST.get(video_id) st.video(video_choice, format='video/mp4', start_time=0) udisp.render_md("resources/home_info.md")
def write(): st.image(image, caption=None, width=None, use_column_width=True, clamp=False, channels='RGB') #st.title("Automated Summary App") udisp.render_md("resources/home_info.md")
def calc_main(title, subtitle): st.sidebar.title(title) st.sidebar.info(subtitle) if st.checkbox("Show help document? "): display.render_md("resources/compound.md") show_operator = False principal_float = st.text_input('Please input principal amound: ') rate_float = st.text_input('Please input annual interest rate (float): ') years_float = st.text_input('Please input years (float): ') m_y_keys = globalDefine.CI_CHOICE.keys() m_y_id = st.selectbox("Select Compound Option (Monthly/Yearly): ", list(m_y_keys)) monthly_yearly = globalDefine.CI_CHOICE.get(m_y_id) if not principal_float.isnumeric() and not rate_float.isnumeric( ) and not years_float.isnumeric(): st.write("Principal, rate & years must be numeric") else: P = float(principal_float) R = float(rate_float) N = float(years_float) show_operator = True if show_operator: if (monthly_yearly == "YEARLY"): st.write("Formula: " + "CI = P * (pow((1 + R / 100), N)) ") CI = yearly_compound_interest(P, R, N) st.write( 'At the end of ', N, 'year(s) your principal plus compound interest will be $', format(CI, '.2f')) else: st.write("Formula: " + "CI = P * (1 + R / 12) ** (12 * T)") st.write( "Note: For montly compound interst the rate is divided by 100 means R = R/100" ) CI = monthly_compound_interest(P, R / 100, N) st.write( 'At the end of ', N, 'year(s) your principal plus compound interest will be $', format(CI, '.2f')) if st.checkbox("Show source code? "): st.code(display.show_code("core/compound/CalcEngine.py")) st.write( "Forumla Source: https://www.thecalculatorsite.com/finance/calculators/compoundinterestcalculator.php" )
def write(): #udisp.title_awesome("Summarized Text") #st.title("Summarize Text") summarytexteng.sum_main("Summarize Text", "Enter or paste text in the below box") udisp.render_md("resources/summarytext2.md") udisp.render_md("resources/summarytext.md") # if st.checkbox("Show help document"): # st.code(udisp.render_md("resources/summarytext.md")) #udisp.render_md("resources/summarytext.md") #st.write("@nagamayuri")
def write(): udisp.title_awesome("About") udisp.render_md("resources/about.md")
def write(): #udisp.title_awesome("About") udisp.render_md("resources/credits.md")
def write(): udisp.title_awesome('Sobre mim') udisp.render_md("resources/about.md")
def write(): udisp.title_awesome("About") udisp.render_md("resources/credits.md") st.write("Thanks!!") st.write("@avkashchauhan")
def run_main(title, subtitle): st.write("Solve your Puzzle") frameST = st.empty() st.sidebar.title("Choose selection..") if st.checkbox("Read Instructions before start? "): udisp.render_md("resources/beforeyoustart.md") puzzlesize_keys = globalDefine.PUZZLE_SIZE.keys() puzzlesize_id = st.sidebar.selectbox("Select Puzzle Size: ", list(puzzlesize_keys)) puzzle_size = globalDefine.PUZZLE_SIZE.get(puzzlesize_id) model_list_keys = globalDefine.MODELS_LIST.keys() model_master_id = st.sidebar.selectbox("Select Network type: ", list(model_list_keys), 0) model_master = globalDefine.MODELS_LIST.get(model_master_id) input_img_type_keys = globalDefine.INPUT_TYPES.keys() input_img_type_id = st.sidebar.selectbox("Select Image Location: ", list(input_img_type_keys)) input_img_type = globalDefine.INPUT_TYPES.get(input_img_type_id) problem_img_path = st.text_input( 'Please input puzzle image file/url here...') solution_file_path = st.text_input( 'Please input target solution file/url here...') progress_start = False if st.checkbox("Validate input images and solve puzzle"): st.write("Validating input path....") if input_img_type == "LOCAL": problem_valid = filemgmt.validateLocalPath(problem_img_path) solution_valid = filemgmt.validateLocalPath(solution_file_path) else: ##problem_valid = filemgmt.validateUrlPath(problem_img_path) ##if problem_valid: problem_valid, problem_img_path = filemgmt.processPuzzleUrl( problem_img_path) ##solution_valid = filemgmt.validateUrlPath(solution_file_path) ##if solution_valid: solution_valid, solution_file_path = filemgmt.processSolutionUrl( solution_file_path) st.write(problem_img_path) st.write(solution_file_path) if (problem_valid and solution_valid): st.write("Success: Both file contents are valid..") progress_start = True else: st.write("Error: Both file contents are invalid..") if progress_start: ##st.image(problem_img_path) ##st.image(solution_file_path) ## Step 1.1 - Original Input Image (Selected) >>> SOLUTION input_img_url = ImageFormater.setup_image_requirements( solution_file_path, puzzle_size) original_image_np = np.array(Image.open(input_img_url).convert('RGB')) st.image(original_image_np) ## Step 1.2 - Shuffled Image (Auto) >>>> PROBLEM ##shuffled_image_np, original_image_blocks, key_map_orig, blk_size, shuffle_img_blks = ImageScrambler.shuffle_image(problem_img_path, puzzle_size) problem_img_url = ImageFormater.setup_image_requirements( problem_img_path, puzzle_size) shuffled_image_np = np.array( Image.open(problem_img_url).convert('RGB')) st.image(shuffled_image_np) blk_size, shuffle_img_blks = ImageScrambler.zigsaw_image( shuffled_image_np, puzzle_size) st.title(" Start Solving Puzzle......") ## Using Shuffled Image st.write("Generating Training Data...") training_image_files = ImageToTrainAndTestData.generate_training_data( shuffled_image_np, puzzle_size) st.write("Total ", len(training_image_files), " training image files are generated!!") ## TODO: Verify all the files on disk to make sure they do exist ## Using Original Image st.write("Generating Test Data...") test_image_files = ImageToTrainAndTestData.generate_test_data( input_img_url, puzzle_size) st.write("Total ", len(test_image_files), " test image files are generated!!") ## TODO: Verify all the files on disk to make sure they do exist st.write("Loading Training and Test Data for Deep Learning... ") imgs_train = ImageToTrainAndTestData.load_images_into_memory( training_image_files, "train_img", 'train') imgs_test = ImageToTrainAndTestData.load_images_into_memory( test_image_files, "test_img", 'test') st.write("Total ", len(imgs_train), " training and ", len(imgs_test), " test images are loaded into memory for deep learning") st.title("Now starting deep learning using {} Network..".format( model_master)) n_epochs = None st.write("Preparing model configuration...") shape_img = imgs_train[0].shape model, shape_img_resize, input_shape_model, output_shape_model, n_epochs, outDir = ModelBuilder.config_model_builder( model_master, shape_img) st.write("Displaying model summary.. ") if model_master in ["simpleAE", "convAE"]: st.write(model.info) elif model_master in ["vgg19"]: st.write(model.summary()) st.write( "Transforming training and test data based on selected model type.. " ) X_train, X_test = ModelBuilder.applying_transformer( shape_img_resize, imgs_train, imgs_test, input_shape_model) st.write( "First checking the stored model and if not found then building it.." ) all_model_files = ModelBuilder.get_saved_models_info(outDir) if (len(all_model_files)) == 0: st.write( "Start building model (The batch counts are {} for this process.)... Please wait..." .format(n_epochs)) model = ModelBuilder.start_batch_process(model_master, X_train, model, n_epochs) else: st.write( "Model is already available so we are not building it to expedite the demo......" ) st.write("Verifing model stored into disk..") all_model_files = ModelBuilder.get_saved_models_info(outDir) st.write(all_model_files) st.write("Generate embeddings by using model.. ") E_train_flatten, E_test_flatten = ModelBuilder.generate_embedding_from_model( model, X_train, X_test, output_shape_model) st.write("Fitting KNN Model..") knn_neighbors = 5 knn_metric = "cosine" knn = ModelBuilder.fit_knn_model(E_train_flatten, knn_neighbors, knn_metric) st.write(knn) st.title("Generate final result map (image sequence)...") final_list_map = ModelBuilder.generate_final_mapping_list( knn, E_test_flatten) st.write(final_list_map) st.write( "Reconstructing result image based on image sequence generate in previoud step... " ) final_image_np = ModelBuilder.generate_final_result_image( shuffled_image_np, blk_size, puzzle_size, shuffle_img_blks, final_list_map) st.image(final_image_np)
def write(): udisp.title_awesome("Puzzle Solver Home") udisp.render_md("resources/home_info.md")
def write(): udisp.title_awesome("Step by Step Code Review") udisp.render_md("resources/codestudy.md")