コード例 #1
0
    def epoch_completed_callback(engine):
        epoch = engine.state.epoch

        if lr_scheduler is not None:
            lr_scheduler.step()

        if epoch % eval_interval == 0:
            logger.info("Model saved at {}/{}_model_{}.pth".format(
                save_dir, prefix, epoch))

        if evaluator and epoch % eval_interval == 0:
            torch.cuda.empty_cache()

            # extract query feature
            evaluator.run(query_loader)

            q_feats = torch.cat(evaluator.state.feat_list, dim=0)
            q_ids = torch.cat(evaluator.state.id_list, dim=0).numpy()
            q_cams = torch.cat(evaluator.state.cam_list, dim=0).numpy()

            # extract gallery feature
            evaluator.run(gallery_loader)

            g_feats = torch.cat(evaluator.state.feat_list, dim=0)
            g_ids = torch.cat(evaluator.state.id_list, dim=0).numpy()
            g_cams = torch.cat(evaluator.state.cam_list, dim=0).numpy()
            g_img_paths = np.concatenate(evaluator.state.img_path_list, axis=0)

            perm = sio.loadmat(
                os.path.join(dataset_cfg.sysu.data_root, 'exp',
                             'rand_perm_cam.mat'))['rand_perm_cam']
            mAP, r1, r5, _, _ = eval_sysu(q_feats, q_ids, q_cams, g_feats,
                                          g_ids, g_cams, g_img_paths, perm)

            if writer is not None:
                writer.add_scalar('eval/mAP', mAP, epoch)
                writer.add_scalar('eval/r1', r1, epoch)
                writer.add_scalar('eval/r5', r5, epoch)

            evaluator.state.feat_list.clear()
            evaluator.state.id_list.clear()
            evaluator.state.cam_list.clear()
            evaluator.state.img_path_list.clear()
            del q_feats, q_ids, q_cams, g_feats, g_ids, g_cams

            torch.cuda.empty_cache()
コード例 #2
0
    logging.basicConfig(level=logging.INFO, format="%(message)s")

    # extract feature
    cmd = "python{} extract.py {} {} ".format(sys.version[0], args.gpu, args.model_path)
    if args.dataset is not None:
        cmd += "--dataset {}".format(args.dataset)

    subprocess.check_call(cmd.strip().split(" "))

    # evaluation
    q_mat_path = 'features/%s/query-%s.mat' % (dataset, prefix)
    g_mat_path = 'features/%s/gallery-%s.mat' % (dataset, prefix)

    assert os.path.exists(q_mat_path)
    assert os.path.exists(g_mat_path)

    mat = sio.loadmat(q_mat_path)
    q_feats = mat["feat"]
    q_ids = mat["ids"].squeeze()
    q_cam_ids = mat["cam_ids"].squeeze()

    mat = sio.loadmat(g_mat_path)
    g_feats = mat["feat"]
    g_ids = mat["ids"].squeeze()
    g_cam_ids = mat["cam_ids"].squeeze()
    g_img_paths = mat['img_path'].squeeze()

    perm = sio.loadmat(os.path.join(dataset_cfg.get(dataset).data_root, 'exp', 'rand_perm_cam.mat'))['rand_perm_cam']
    eval_sysu(q_feats, q_ids, q_cam_ids, g_feats, g_ids, g_cam_ids, g_img_paths, perm)
コード例 #3
0
ファイル: __init__.py プロジェクト: DoubtedSteam/MPANet
    def train_completed(engine):
        torch.cuda.empty_cache()

        # extract query feature
        evaluator.run(query_loader)

        q_feats = torch.cat(evaluator.state.feat_list, dim=0)
        q_ids = torch.cat(evaluator.state.id_list, dim=0).numpy()
        q_cams = torch.cat(evaluator.state.cam_list, dim=0).numpy()
        q_img_paths = np.concatenate(evaluator.state.img_path_list, axis=0)

        # extract gallery feature
        evaluator.run(gallery_loader)

        g_feats = torch.cat(evaluator.state.feat_list, dim=0)
        g_ids = torch.cat(evaluator.state.id_list, dim=0).numpy()
        g_cams = torch.cat(evaluator.state.cam_list, dim=0).numpy()
        g_img_paths = np.concatenate(evaluator.state.img_path_list, axis=0)

        # print("best rank1={:.2f}%".format(engine.state.best_rank1))

        if dataset == 'sysu':
            perm = sio.loadmat(
                os.path.join(dataset_cfg.sysu.data_root, 'exp',
                             'rand_perm_cam.mat'))['rand_perm_cam']
            eval_sysu(q_feats,
                      q_ids,
                      q_cams,
                      g_feats,
                      g_ids,
                      g_cams,
                      g_img_paths,
                      perm,
                      mode='all',
                      num_shots=1,
                      rerank=engine.rerank)
            eval_sysu(q_feats,
                      q_ids,
                      q_cams,
                      g_feats,
                      g_ids,
                      g_cams,
                      g_img_paths,
                      perm,
                      mode='all',
                      num_shots=10,
                      rerank=engine.rerank)
            eval_sysu(q_feats,
                      q_ids,
                      q_cams,
                      g_feats,
                      g_ids,
                      g_cams,
                      g_img_paths,
                      perm,
                      mode='indoor',
                      num_shots=1,
                      rerank=engine.rerank)
            eval_sysu(q_feats,
                      q_ids,
                      q_cams,
                      g_feats,
                      g_ids,
                      g_cams,
                      g_img_paths,
                      perm,
                      mode='indoor',
                      num_shots=10,
                      rerank=engine.rerank)
        elif dataset == 'regdb':
            print('infrared to visible')
            eval_regdb(q_feats,
                       q_ids,
                       q_cams,
                       g_feats,
                       g_ids,
                       g_cams,
                       g_img_paths,
                       rerank=engine.rerank)
            print('visible to infrared')
            eval_regdb(g_feats,
                       g_ids,
                       g_cams,
                       q_feats,
                       q_ids,
                       q_cams,
                       q_img_paths,
                       rerank=engine.rerank)
        elif dataset == 'market':
            eval_regdb(q_feats,
                       q_ids,
                       q_cams,
                       g_feats,
                       g_ids,
                       g_cams,
                       g_img_paths,
                       rerank=engine.rerank)

        evaluator.state.feat_list.clear()
        evaluator.state.id_list.clear()
        evaluator.state.cam_list.clear()
        evaluator.state.img_path_list.clear()
        del q_feats, q_ids, q_cams, g_feats, g_ids, g_cams

        torch.cuda.empty_cache()
コード例 #4
0
ファイル: __init__.py プロジェクト: DoubtedSteam/MPANet
    def epoch_completed_callback(engine):
        epoch = engine.state.epoch

        if lr_scheduler is not None:
            lr_scheduler.step()

        if epoch % eval_interval == 0:
            logger.info("Model saved at {}/{}_model_{}.pth".format(
                save_dir, prefix, epoch))

        if evaluator and epoch % eval_interval == 0 and epoch > start_eval:
            torch.cuda.empty_cache()

            # extract query feature
            evaluator.run(query_loader)

            q_feats = torch.cat(evaluator.state.feat_list, dim=0)
            q_ids = torch.cat(evaluator.state.id_list, dim=0).numpy()
            q_cams = torch.cat(evaluator.state.cam_list, dim=0).numpy()
            q_img_paths = np.concatenate(evaluator.state.img_path_list, axis=0)

            # extract gallery feature
            evaluator.run(gallery_loader)

            g_feats = torch.cat(evaluator.state.feat_list, dim=0)
            g_ids = torch.cat(evaluator.state.id_list, dim=0).numpy()
            g_cams = torch.cat(evaluator.state.cam_list, dim=0).numpy()
            g_img_paths = np.concatenate(evaluator.state.img_path_list, axis=0)

            if dataset == 'sysu':
                perm = sio.loadmat(
                    os.path.join(dataset_cfg.sysu.data_root, 'exp',
                                 'rand_perm_cam.mat'))['rand_perm_cam']
                mAP, r1, r5, _, _ = eval_sysu(q_feats,
                                              q_ids,
                                              q_cams,
                                              g_feats,
                                              g_ids,
                                              g_cams,
                                              g_img_paths,
                                              perm,
                                              mode='all',
                                              num_shots=1,
                                              rerank=engine.rerank)
            elif dataset == 'regdb':
                print('infrared to visible')
                mAP, r1, r5, _, _ = eval_regdb(q_feats,
                                               q_ids,
                                               q_cams,
                                               g_feats,
                                               g_ids,
                                               g_cams,
                                               g_img_paths,
                                               rerank=engine.rerank)
                print('visible to infrared')
                mAP, r1_, r5, _, _ = eval_regdb(g_feats,
                                                g_ids,
                                                g_cams,
                                                q_feats,
                                                q_ids,
                                                q_cams,
                                                q_img_paths,
                                                rerank=engine.rerank)
                r1 = (r1 + r1_) / 2
            elif dataset == 'market':
                mAP, r1, r5, _, _ = eval_regdb(q_feats,
                                               q_ids,
                                               q_cams,
                                               g_feats,
                                               g_ids,
                                               g_cams,
                                               g_img_paths,
                                               rerank=engine.rerank)

            if r1 > engine.state.best_rank1:
                engine.state.best_rank1 = r1
                torch.save(model.state_dict(),
                           "{}/model_best.pth".format(save_dir))

            if writer is not None:
                writer.add_scalar('eval/mAP', mAP, epoch)
                writer.add_scalar('eval/r1', r1, epoch)
                writer.add_scalar('eval/r5', r5, epoch)

            evaluator.state.feat_list.clear()
            evaluator.state.id_list.clear()
            evaluator.state.cam_list.clear()
            evaluator.state.img_path_list.clear()
            del q_feats, q_ids, q_cams, g_feats, g_ids, g_cams

            torch.cuda.empty_cache()