コード例 #1
0
def test(
    model, val_loader, epoch,
    prediction_root, check_root_feature, check_root_opti, val_root
):
    # 改为测试模式
    # model.eval()
    time_begin_test = time.time()

    val_output_root = (prediction_root + '/epoch_current')
    if not os.path.exists(val_output_root):
        os.makedirs(val_output_root)

    print("\ngenerating output images")
    for ib, (input_, img_name, _) in enumerate(val_loader):
        inputs = Variable(input_).cuda()
        _, _, _, _, output = model.forward(inputs)
        out = output.data.cpu().numpy()
        for i in range(len(img_name)):
            imsave(os.path.join(val_output_root, img_name[i] + '.png'),
                   out[i, 0], cmap='gray')
    print("\nevaluating mae....")

    # 计算F测度和平均绝对误差
    F_measure, mae = get_FM(
        salpath=val_output_root + '/', gtpath=val_root + '/masks/'
    )

    time_end_test = time.time()
    print("测试一次的时间:", time_end_test - time_begin_test)

    return epoch, F_measure, mae
コード例 #2
0
    def test(self, iteration, test_data):
        res = []
        MapRoot = self.salmap_root + test_data
        for id, (data, depth, bins, img_name,
                 img_size) in enumerate(self.test_loaders[test_data]):
            # print('testing bach %d' % id)
            inputs = Variable(data).cuda()
            depth = Variable(depth).cuda()
            bins = Variable(bins).cuda()
            n, c, h, w = inputs.size()
            depth = depth.view(n, 1, h, w).repeat(1, c, 1, 1)
            torch.cuda.synchronize()
            start = time.time()
            with torch.no_grad():
                h1, h2, h3, h4, h5 = self.model_rgb(inputs, bins, gumbel=False)
                d0, d1, d2, d3, d4 = self.model_depth(depth)
                predict_mask = self.model_fusion(h1, h2, h3, h4, h5, d0, d1,
                                                 d2, d3, d4)
            torch.cuda.synchronize()
            end = time.time()

            res.append(end - start)
            outputs_all = F.softmax(predict_mask, dim=1)
            outputs = outputs_all[0][1]
            # import pdb; pdb.set_trace()
            outputs = outputs.cpu().data.resize_(h, w)

            imsave(os.path.join(MapRoot, img_name[0] + '.png'), outputs,
                   img_size)
        time_sum = 0
        for i in res:
            time_sum += i
        self.logging.info("FPS: %f" % (1.0 / (time_sum / len(res))))
        # -------------------------- validation --------------------------- #
        torch.cuda.empty_cache()
        F_measure, mae = get_FM(salpath=MapRoot + '/',
                                gtpath=self.test_data_root + test_data +
                                '/test_masks/')

        self.writer.add_scalar('test/' + test_data + '_F_measure', F_measure,
                               iteration + 1)
        self.writer.add_scalar('test/' + test_data + '_MAE', mae,
                               iteration + 1)

        self.logging.info(MapRoot.split('/')[-1] + ' F_measure: %f', F_measure)
        self.logging.info(MapRoot.split('/')[-1] + ' MAE: %f', mae)
        print('the testing process has finished!')

        return F_measure, mae
コード例 #3
0
    for id, (data, depth, img_name, img_size) in enumerate(test_loader):
        print('testing bach %d' % id)

        inputs = Variable(data).cuda()
        inputs_depth = Variable(depth).cuda()

        n, c, h, w = inputs.size()
        depth = inputs_depth.view(n, h, w, 1).repeat(1, 1, 1, c)
        depth = depth.transpose(3, 1)
        depth = depth.transpose(3, 2)

        h1, h2, h3, h4, h5 = model_rgb(inputs)  # RGBNet's output
        d1, d2, d3, d4, d5 = model_depth(depth)  # DepthNet's output
        outputs_all = model_fusion(h1, h2, h3, h4, h5, d1, d2, d3, d4,
                                   d5)  # Final output

        outputs_all = F.softmax(outputs_all, dim=1)
        outputs = outputs_all[0][1]

        outputs = outputs.cpu().data.resize_(h, w)
        imsave(os.path.join(MapRoot, img_name[0] + '.png'), outputs, img_size)

    # -------------------------- validation --------------------------- #
    torch.cuda.empty_cache()

    print("\nevaluating mae....")
    F_measure, mae = get_FM(salpath=MapRoot + '/',
                            gtpath=test_dataRoot + '/test_masks/')
    print('F_measure:', F_measure)
    print('MAE:', mae)
コード例 #4
0
ファイル: main.py プロジェクト: lovife/DHSNet-PyTorch
def main(args):
    dataset = args.dataset
    bsize = args.batch_size
    root = args.data_root
    cache_root = args.cache
    prediction_root = args.pre

    train_root = root + dataset + '/train'
    val_root = root + dataset + '/val'  # validation dataset

    check_root_opti = cache_root + '/opti'  # save checkpoint parameters
    if not os.path.exists(check_root_opti):
        os.mkdir(check_root_opti)

    check_root_feature = cache_root + '/feature'  # save checkpoint parameters
    if not os.path.exists(check_root_feature):
        os.mkdir(check_root_feature)

    train_loader = torch.utils.data.DataLoader(MyData(train_root,
                                                      transform=True),
                                               batch_size=bsize,
                                               shuffle=True,
                                               num_workers=4,
                                               pin_memory=True)

    val_loader = torch.utils.data.DataLoader(MyTestData(val_root,
                                                        transform=True),
                                             batch_size=bsize,
                                             shuffle=True,
                                             num_workers=4,
                                             pin_memory=True)

    model = Feature(RCL_Module)
    model.cuda()
    criterion = nn.BCELoss()
    optimizer_feature = torch.optim.Adam(model.parameters(), lr=args.lr)

    train_losses = []

    progress = tqdm(range(args.start_epoch, args.total_epochs + 1),
                    miniters=1,
                    ncols=100,
                    desc='Overall Progress',
                    leave=True,
                    position=0)
    offset = 1

    best = 0
    evaluation = []
    result = {'epoch': [], 'F_measure': [], 'MAE': []}
    for epoch in progress:
        if (epoch != 0):
            print("\nloading parameters")
            model.load_state_dict(
                torch.load(check_root_feature + '/feature-current.pth'))
            optimizer_feature.load_state_dict(
                torch.load(check_root_opti + '/opti-current.pth'))
            #
        title = 'Training Epoch {}'.format(epoch)
        progress_epoch = tqdm(tools.IteratorTimer(train_loader),
                              ncols=120,
                              total=len(train_loader),
                              smoothing=.9,
                              miniters=1,
                              leave=True,
                              position=offset,
                              desc=title)

        for ib, (input, gt) in enumerate(progress_epoch):
            inputs = Variable(input).cuda()
            gt = Variable(gt.unsqueeze(1)).cuda()
            gt_28 = functional.interpolate(gt, size=28, mode='bilinear')
            gt_56 = functional.interpolate(gt, size=56, mode='bilinear')
            gt_112 = functional.interpolate(gt, size=112, mode='bilinear')

            msk1, msk2, msk3, msk4, msk5 = model.forward(inputs)

            loss = criterion(msk1, gt_28) + criterion(msk2, gt_28) + criterion(
                msk3, gt_56) + criterion(msk4, gt_112) + criterion(msk5, gt)
            model.zero_grad()
            loss.backward()
            optimizer_feature.step()

            train_losses.append(round(float(loss.data.cpu()), 3))
            title = '{} Epoch {}/{}'.format('Training', epoch,
                                            args.total_epochs)
            progress_epoch.set_description(title + ' ' + 'loss:' +
                                           str(loss.data.cpu().numpy()))

        filename = ('%s/feature-current.pth' % (check_root_feature))
        filename_opti = ('%s/opti-current.pth' % (check_root_opti))
        torch.save(model.state_dict(), filename)
        torch.save(optimizer_feature.state_dict(), filename_opti)

        #--------------------------validation on the test set every n epoch--------------
        if (epoch % args.val_rate == 0):
            fileroot = ('%s/feature-current.pth' % (check_root_feature))
            model.load_state_dict(torch.load(fileroot))
            val_output_root = (prediction_root + '/epoch_current')
            if not os.path.exists(val_output_root):
                os.mkdir(val_output_root)
            print("\ngenerating output images")
            for ib, (input, img_name, _) in enumerate(val_loader):
                inputs = Variable(input).cuda()
                _, _, _, _, output = model.forward(inputs)
                output = functional.sigmoid(output)
                out = output.data.cpu().numpy()
                for i in range(len(img_name)):
                    imsave(os.path.join(val_output_root, img_name[i] + '.png'),
                           out[i, 0],
                           cmap='gray')

            print("\nevaluating mae....")
            F_measure, mae = get_FM(salpath=val_output_root + '/',
                                    gtpath=val_root + '/gt/')
            evaluation.append([int(epoch), float(F_measure), float(mae)])
            result['epoch'].append(int(epoch))
            result['F_measure'].append(round(float(F_measure), 3))
            result['MAE'].append(round(float(mae), 3))
            df = pd.DataFrame(result).set_index('epoch')
            df.to_csv('./result.csv')

            if (epoch == 0): best = F_measure - mae
            elif ((F_measure - mae) > best):
                best = F_measure - mae
                filename = ('%s/feature-best.pth' % (check_root_feature))
                filename_opti = ('%s/opti-best.pth' % (check_root_opti))
                torch.save(model.state_dict(), filename)
                torch.save(optimizer_feature.state_dict(), filename_opti)
コード例 #5
0
ファイル: main_vgg.py プロジェクト: lartpang/DHSNet-PyTorch
def main(args):
    dataset = args.dataset
    bsize = args.batch_size
    root = args.data_root
    cache_root = args.cache
    prediction_root = args.pre
    
    train_root = root + dataset + '/Train'
    val_root = root + dataset + '/Test'  # validation dataset
    
    # mkdir( path [,mode] ):创建一个目录,可以是相对或者绝对路径,mode的默认模式是0777。
    # 如果目录有多级,则创建最后一级。如果最后一级目录的上级目录有不存在的,则会抛出一个OSError。
    # makedirs( path [,mode] ):创建递归的目录树,可以是相对或者绝对路径,mode的默认模式是
    # 0777。如果子目录创建失败或者已经存在,会抛出一个OSError的异常,Windows上Error 183即为
    # 目录已经存在的异常错误。如果path只有一级,与mkdir相同。
    check_root_opti = cache_root + '/opti'  # save checkpoint parameters
    if not os.path.exists(check_root_opti):
        os.makedirs(check_root_opti)
    
    check_root_feature = cache_root + '/feature'  # save checkpoint parameters
    if not os.path.exists(check_root_feature):
        os.makedirs(check_root_feature)

    check_root_model = cache_root + '/model'  # save checkpoint parameters
    if not os.path.exists(check_root_model):
        os.makedirs(check_root_model)
        
    # 获取调整后的数据集
    train_loader = torch.utils.data.DataLoader(
        MyData(train_root, transform=True),
        batch_size=bsize, shuffle=True, num_workers=4, pin_memory=True
    )
    val_loader = torch.utils.data.DataLoader(
        MyTestData(val_root, transform=True),
        batch_size=bsize, shuffle=True, num_workers=4, pin_memory=True
    )
    
    model = Vgg(RCL_Module)
    model.cuda()
    
    criterion = nn.BCELoss()
    optimizer_feature = torch.optim.Adam(model.parameters(), lr=args.lr)
    # http://www.spytensor.com/index.php/archives/32/
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer_feature, 'max', verbose=1, patience=10
    )
    progress = tqdm(
        range(args.start_epoch, args.total_epochs + 1), miniters=1,
        ncols=100, desc='Overall Progress', leave=True, position=0
    )
    offset = 1
    
    best = 0
    evaluation = []
    result = {'epoch': [], 'F_measure': [], 'MAE': []}
    for epoch in progress:
        # ===============================TRAIN=================================
        # if epoch != 0:
        #     print("\nloading parameters")
        #     # 载入上一次的训练结果(权重和偏置项), 进一步的训练
        #     model.load_state_dict(
        #         torch.load(check_root_feature + '/feature-current.pth')
        #     )
        #     # 载入优化器状态
        #     optimizer_feature.load_state_dict(
        #         torch.load(check_root_opti + '/opti-current.pth')
        #     )
        
        title = 'Training Epoch {}'.format(epoch)
        progress_epoch = tqdm(
            tools.IteratorTimer(train_loader), ncols=120,
            total=len(train_loader), smoothing=0.9, miniters=1,
            leave=True, position=offset, desc=title
        )
        
        # 一个周期内部进行迭代计算
        for ib, (input_, gt) in enumerate(progress_epoch):
            # 获取对应的5个掩膜预测结果
            inputs = Variable(input_).cuda()
            msk1, msk2, msk3, msk4, msk5 = model.forward(inputs)
            
            gt = Variable(gt.unsqueeze(1)).cuda()
            gt_28 = functional.interpolate(gt, size=28, mode='bilinear')
            gt_56 = functional.interpolate(gt, size=56, mode='bilinear')
            gt_112 = functional.interpolate(gt, size=112, mode='bilinear')

            loss = criterion(msk1, gt_28) + criterion(msk2, gt_28) \
                   + criterion(msk3, gt_56) + criterion(msk4, gt_112) \
                   + criterion(msk5, gt)
            
            model.zero_grad()
            loss.backward()
            optimizer_feature.step()
            
            title = '{} Epoch {}/{}'.format(
                'Training', epoch, args.total_epochs
            )
            progress_epoch.set_description(
                title + ' ' + 'loss:' + str(loss.data.cpu().numpy())
            )
        
        # 存储一个epoch后的模型(权重和偏置项), 以便后期使用
        filename = ('%s/feature-current.pth' % check_root_feature)
        torch.save(model.state_dict(), filename)
        # 存储优化器状态
        filename_opti = ('%s/opti-current.pth' % check_root_opti)
        torch.save(optimizer_feature.state_dict(), filename_opti)
             
        # ==============================TEST===================================
        if epoch % args.val_rate == 0:
            fileroot = ('%s/feature-current.pth' % check_root_feature)
            # 基于torch.save(model.state_dict(), filename)存储方法的对应的恢复方法
            model.load_state_dict(torch.load(fileroot))
            val_output_root = (prediction_root + '/epoch_current')
            if not os.path.exists(val_output_root):
                os.makedirs(val_output_root)
        
            print("\ngenerating output images")
            for ib, (input_, img_name, _) in enumerate(val_loader):
                inputs = Variable(input_).cuda()
                _, _, _, _, output = model.forward(inputs)
                out = output.data.cpu().numpy()
                for i in range(len(img_name)):
                    print(out[i])
                    imsave(os.path.join(val_output_root, img_name[i] + '.png'),
                           out[i, 0], cmap='gray')
            print("\nevaluating mae....")    
            
#             mean = np.array([0.485, 0.456, 0.406])
#             std = np.array([0.229, 0.224, 0.225])
#             img = Image.open("./data/ILSVRC2012_test_00000004_224x224.jpg")
#             img = np.array(img)
#             img = img.astype(np.float64) / 255
#             img -= mean
#             img /= std
#             img = img.transpose(2, 0, 1)
#             img = np.array(img)[np.newaxis, :, :, :].astype(np.float32)
#             img = torch.from_numpy(img).float()
#             inputs = Variable(img).cuda()
#             _, _, _, _, output = model.forward(inputs)
#             out = output.data.cpu().numpy()
#             print(out)
#             imsave(os.path.join(val_output_root, 'caffe2_test' + '.png'),
#                        out[0, 0], cmap='gray')
      
            # 计算F测度和平均绝对误差
            F_measure, mae = get_FM(
                salpath=val_output_root + '/', gtpath=val_root + '/masks/'
            )
            evaluation.append([int(epoch), float(F_measure), float(mae)])
            result['epoch'].append(int(epoch))
            result['F_measure'].append(round(float(F_measure), 3))
            result['MAE'].append(round(float(mae), 3))
            df = pd.DataFrame(result).set_index('epoch')
            df.to_csv('./result.csv')
        
            if epoch == 0:
                best = F_measure - mae
            elif (F_measure - mae) > best:
                best = F_measure - mae
                # 存储最好的权重和偏置
                filename = ('%s/feature-best.pth' % check_root_feature)
                torch.save(model.state_dict(), filename)
                # 存储最好的优化器状态
                filename_opti = ('%s/opti-best.pth' % check_root_opti)
                torch.save(optimizer_feature.state_dict(), filename_opti)
#                 # 存储最好的完整网络
#                 filename_opti = ('%s/model-best.pth' % check_root_model)
#                 torch.save(model, filename_opti)
                print("完成一次保存")
            # 只在验证期间考虑更改学习率
            scheduler.step(best)
            print("完成一次测试")