def train_add(func=lambda a, b: a + b, results_dir=None, reg_weight=5e-2, learning_rate=1e-2, n_epochs=10001): """Addition of two MNIST digits with a symbolic regression network.""" tf.reset_default_graph() # Symbolic regression network to combine the conv net outputs PRIMITIVE_FUNCS = [ *[functions.Constant()] * 2, *[functions.Identity()] * 4, *[functions.Square()] * 4, *[functions.Sin()] * 2, *[functions.Exp()] * 2, *[functions.Sigmoid()] * 2, *[functions.Product()] * 2, ] sr_net = symbolic_network.SymbolicNet(2, funcs=PRIMITIVE_FUNCS, init_stddev=0.1) # Symbolic regression network # Overall architecture sym_digit_network = SymbolicDigit(sr_net=sr_net, normalize=normalize) # Set up regularization term and training penalty = regularization.l12_smooth(sr_net.get_weights()) penalty = reg_weight * penalty sym_digit_network.set_training(reg=penalty) config = tf.ConfigProto() config.gpu_options.allow_growth = True # Take up variable amount of memory on GPU sess = tf.Session(config=config) batch = batch_generator(batch_size=100) # Train, and restart training if loss goes to NaN loss_i = np.nan while np.isnan(loss_i): sess.run(tf.global_variables_initializer()) loss_i = sym_digit_network.train(sess, n_epochs, batch, func, lr_val=learning_rate) if np.isnan(loss_i): continue # Freezing weights sr_net = symbolic_network.MaskedSymbolicNet(sess, sr_net, threshold=0.01) sym_digit_network = SymbolicDigitMasked(sym_digit_network, sr_net, normalize=normalize) sym_digit_network.set_training() # Training with frozen weights. Regularization is 0 loss_i = sym_digit_network.train(sess, n_epochs, batch, func, lr_val=learning_rate/10) # Print out human-readable equation (with regularization) weights = sess.run(sr_net.get_weights()) expr = pretty_print.network(weights, PRIMITIVE_FUNCS, ["z1", "z2"]) expr = normalize(expr) print(expr) # Calculate accuracy on test dataset acc_test, error_test = sym_digit_network.calc_accuracy(X_test, y_test, func, sess) result_str = 'Test accuracy: %g\n' % acc_test print(result_str) sym_digit_network.save_result(sess, results_dir, expr, result_str)
def __init__(self, results_dir, n_layers=2, reg_weight=1e-2, learning_rate=1e-2, n_epochs1=10001): super().__init__( results_dir, n_layers, reg_weight, learning_rate, n_epochs1, ) self.activation_funcs = [ [ *[functions.Constant()] * 2, *[functions.Identity()] * 10, # *[functions.Square()] * 4, *[functions.Sin()] * 10, # *[functions.Exp()] * 2, # *[functions.Sigmoid()] * 2, # *[functions.Reciprocal(1.0)] * 2, *[functions.Product(1.0)] * 10, ], [ *[functions.Constant()] * 2, *[functions.Identity()] * 10, # *[functions.Square()] * 4, *[functions.Sin()] * 10, # *[functions.Exp()] * 2, # *[functions.Sigmoid()] * 2, # *[functions.Division(1.0)] * 2, *[functions.Product(1.0)] * 10, ], [ # *[functions.Constant()] * 2, # *[functions.Identity()] * 4, # *[functions.Reciprocal(1.0)] * 2, *[functions.Division(1.0)] * 2, ] ]
def __init__(self, results_dir, n_layers=2, reg_weight=5e-3, learning_rate=1e-2, n_epochs1=10001, n_epochs2=10001, m=1): """Set hyper-parameters""" self.activation_funcs = [ *[functions.Constant()] * 2 * m, *[functions.Identity()] * 4 * m, *[functions.Square()] * 4 * m, *[functions.Sin()] * 2 * m, *[functions.Exp()] * 2 * m, *[functions.Sigmoid()] * 2 * m, *[functions.Product(1.0)] * 2 * m ] self.n_layers = n_layers # Number of hidden layers self.reg_weight = reg_weight # Regularization weight self.learning_rate = learning_rate self.summary_step = 1000 # Number of iterations at which to print to screen self.n_epochs1 = n_epochs1 self.n_epochs2 = n_epochs2 self.m = m if not os.path.exists(results_dir): os.makedirs(results_dir) self.results_dir = results_dir # Save hyperparameters to file result = { "learning_rate": self.learning_rate, "summary_step": self.summary_step, "n_epochs1": self.n_epochs1, "n_epochs2": self.n_epochs2, "activation_funcs_name": [func.name for func in self.activation_funcs], "n_layers": self.n_layers, "reg_weight": self.reg_weight, 'n_func_multiplier': self.m } with open(os.path.join(self.results_dir, 'params.pickle'), "wb+") as f: pickle.dump(result, f)
def main(results_dir='results/sho/test', trials=1, learning_rate=1e-2, reg_weight=2e-4, timesteps=25, batch_size=129, n_epochs1=2001, n_epochs2=5001, n_epochs3=5001): # Hyperparameters summary_step = 500 timesteps0 = 1 primitive_funcs = [ *[functions.Constant()] * 2, *[functions.Identity()] * 4, *[functions.Square()] * 4, *[functions.Sin()] * 2, *[functions.Exp()] * 2, *[functions.Sigmoid()] * 2, *[functions.Product(norm=0.1)] * 2, ] # Import parabola data data = np.load('dataset/sho.npz') x_d = np.asarray(data["x_d"]) x_v = np.asarray(data["x_v"]) y_d = np.asarray(data["y_d"]) y_v = np.asarray(data["y_v"]) omega2_data = data["omega2"] N = data["N"] # Prepare data x = np.stack((x_d, x_v), axis=2) # Shape (N, NT, 2) y0 = np.stack((y_d[:, 0], y_v[:, 0]), axis=1) # Initial conditions for prediction y, fed into propagator y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]), axis=2) # shape(NG, LENGTH, 2) # Tensorflow placeholders for x, y0, y x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]), dtype=tf.float32, name="enc_input") y0_input = tf.placeholder(shape=(None, 2), dtype=tf.float32, name="prop_input") # input is d, v y_input = tf.placeholder(shape=(None, timesteps, 2), dtype=tf.float32, name="label_input") length_input = tf.placeholder(dtype=tf.int32, shape=()) # Dynamics encoder encoder = helpers.Encoder() training = tf.placeholder_with_default(False, []) z = encoder(x_input, training=training) z_data = omega2_data[:, np.newaxis] # Propagating decoders prop_d = SymbolicNet(2, funcs=primitive_funcs) prop_v = SymbolicNet(2, funcs=primitive_funcs) prop_d.build(4) prop_v.build(4) # Building recurrent structure rnn = tf.keras.layers.RNN(SymbolicCell(prop_d, prop_v), return_sequences=True) y0_rnn = tf.concat([tf.expand_dims(y0_input, axis=1), tf.zeros((tf.shape(y0_input)[0], length_input - 1, 2))], axis=1) prop_input = tf.concat([y0_rnn, tf.keras.backend.repeat(z, length_input), tf.ones((tf.shape(y0_input)[0], length_input, 1))], axis=2) prop_output = rnn(prop_input) epoch = tf.placeholder(tf.float32) reg_freq = np.pi / (n_epochs1 + n_epochs2) / 1.1 reg_loss = tf.sin(reg_freq * epoch) ** 2 * regularization.l12_smooth(prop_d.get_weights()) + \ tf.sin(reg_freq * epoch) ** 2 * regularization.l12_smooth(prop_v.get_weights()) # reg_loss = regularization.l12_smooth(prop_d.get_weights()) + regularization.l12_smooth(prop_v.get_weights()) # Training learning_rate_ph = tf.placeholder(tf.float32) opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph) reg_weight_ph = tf.placeholder(tf.float32) error = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=prop_output) loss = error + reg_weight_ph * reg_loss train = tf.group([opt.minimize(loss), encoder.bn.updates]) batch = helpers.batch_generator([x, y_data, y0, z_data], N=N, batch_size=batch_size) # Training session with tf.Session() as sess: for _ in range(trials): loss_i = np.nan while np.isnan(loss_i): loss_list = [] error_list = [] reg_list = [] sess.run(tf.global_variables_initializer()) for i in range(n_epochs1 + n_epochs2): if i < n_epochs1: reg_weight_i = reg_weight / 5 learning_rate_i = learning_rate length_i = min(i // 500 * 2 + timesteps0, timesteps) else: reg_weight_i = reg_weight learning_rate_i = learning_rate / 5 length_i = timesteps x_batch, y_batch, y0_batch, z_batch = next(batch) feed_dict = {x_input: x_batch, y0_input: y0_batch, y_input: y_batch, epoch: i, learning_rate_ph: learning_rate_i, training: True, reg_weight_ph: reg_weight_i, length_input: length_i} _ = sess.run(train, feed_dict=feed_dict) if i % summary_step == 0 or i == n_epochs1 - 1: feed_dict[training] = False loss_i, error_i, reg_i = sess.run((loss, error, reg_loss), feed_dict=feed_dict) z_arr = sess.run(z, feed_dict=feed_dict) r = np.corrcoef(z_batch[:, 0], z_arr[:, 0])[1, 0] loss_list.append(loss_i) error_list.append(error_i) reg_list.append(reg_i) print("Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f\tCorrelation: %f" % (i, loss_i, error_i, reg_i, r)) if np.isnan(loss_i): break # Setting small weights to 0 and freezing them prop_d_masked = MaskedSymbolicNet(sess, prop_d, threshold=0.01) prop_v_masked = MaskedSymbolicNet(sess, prop_v, threshold=0.01) # Keep track of currently existing variables. When we rebuild the rnn, it makes new variables that we need # to initialize. Later, we will use this to figure out what the uninitialized variables are. temp = set(tf.global_variables()) # Rebuilding the decoding propagator. Remove regularization rnn = tf.keras.layers.RNN(SymbolicCell(prop_d_masked, prop_v_masked), return_sequences=True) prop_output = rnn(prop_input) loss = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=prop_output) train = tf.group([opt.minimize(loss), encoder.bn.updates]) weights_d = sess.run(prop_d_masked.get_weights()) expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1]) print(expr_d) weights_v = sess.run(prop_v_masked.get_weights()) expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1]) print(expr_v) print("Frozen weights. Next stage of training.") # Initialize only the uninitialized variables. sess.run(tf.variables_initializer(set(tf.global_variables()) - temp)) for i in range(n_epochs3): x_batch, y_batch, y0_batch, z_batch = next(batch) feed_dict = {x_input: x_batch, y0_input: y0_batch, y_input: y_batch, epoch: 0, learning_rate_ph: learning_rate / 10, training: True, reg_weight_ph: 0, length_input: length_i} _ = sess.run(train, feed_dict=feed_dict) if i % summary_step == 0: feed_dict[training] = False loss_i, error_i, reg_i = sess.run((loss, error, reg_loss), feed_dict=feed_dict) z_arr = sess.run(z, feed_dict=feed_dict) r = np.corrcoef(z_batch[:, 0], z_arr[:, 0])[1, 0] loss_list.append(loss_i) error_list.append(error_i) reg_list.append(reg_i) print("Epoch %d\tError: %g\tCorrelation: %f" % (i, error_i, r)) weights_d = sess.run(prop_d_masked.get_weights()) expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1]) print(expr_d) weights_v = sess.run(prop_v_masked.get_weights()) expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1]) print(expr_v) # Save results results = { "summary_step": summary_step, "learning_rate": learning_rate, "n_epochs1": n_epochs1, "n_epochs2": n_epochs2, "reg_weight": reg_weight, "timesteps": timesteps, "timesteps0": timesteps0, "weights_d": weights_d, "weights_v": weights_v, "loss_plot": loss_list, "error_plot": error_list, "reg_plot": reg_list, "expr_d": expr_d, "expr_v": expr_v } trial_dir = helpers.get_trial_path(results_dir) # Get directory in which to save trial results tf.saved_model.simple_save(sess, trial_dir, inputs={"x": x_input, "y0": y0_input, "training": training}, outputs={"z": z, "y": prop_output}) # Save a summary of the parameters and results with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f: pickle.dump(results, f) with open(os.path.join(results_dir, 'eq_summary.txt'), 'a') as f: f.write(str(expr_d) + "\n") f.write(str(expr_v) + "\n") f.write("Error: %f\n\n" % error_list[-1])
def main(results_dir='results/kinematics/test', learning_rate=1e-2, reg_weight=1e-3, n_epochs1=5001, n_epochs2=5001, timesteps=5): # Hyperparameters summary_step = 500 timesteps0 = 1 # Import kinematics data data = np.load('dataset/kinematic.npz') x_d = np.asarray(data["x_d"]) x_v = np.asarray(data["x_v"]) y_d = np.asarray(data["y_d"]) y_v = np.asarray(data["y_v"]) a_data = np.asarray(data["g"]) # Prepare data # The first few time steps are reserved for the symbolic regression propagator x = np.stack((x_d, x_v), axis=2) # Shape (N, NT, 2) y0 = np.stack((y_d[:, 0], y_v[:, 0]), axis=1) # Input into the symbolic propagator label_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]), axis=2) # shape(NG, timesteps, 2) # Encoder encoder = helpers.Encoder() # layer should end with 1, which is the output x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]), dtype=tf.float32, name="enc_input") y_input = tf.placeholder(shape=(None, timesteps, 2), dtype=tf.float32, name="label_input") training = tf.placeholder_with_default(False, []) z = encoder(x_input, training=training) # z = np.array(a_data)[:, np.newaxis] # uncomment to ignore the autoencoder # Propagating decoder primitive_funcs = [ *[functions.Constant()] * 2, *[functions.Identity()] * 4, *[functions.Square()] * 4, *[functions.Sin()] * 2, *[functions.Exp()] * 2, *[functions.Sigmoid()] * 2, *[functions.Product(norm=0.1)] * 2, ] prop_d = SymbolicNet(2, funcs=primitive_funcs) prop_v = SymbolicNet(2, funcs=primitive_funcs) prop_input = tf.placeholder(shape=(None, 2), dtype=tf.float32, name="prop_input") # input is d, v def rec_sr(y0_input, enc_output, length, prop1=prop_d, prop2=prop_v): rec_input = [y0_input] for i in range(length): full_input = tf.concat( [rec_input[i], enc_output, tf.ones_like(enc_output)], axis=1, name="full_input") # d, v, z rec_input.append( tf.concat( [prop1(full_input), prop2(full_input)], axis=1, name="c_prop_input")) output = tf.stack(rec_input[1:], axis=1) # Ignore initial conditions return output y_hat_start = rec_sr(prop_input, z, timesteps0, prop_d, prop_v) y_hat_full = rec_sr(prop_input, z, timesteps, prop_d, prop_v) # Label and errors epoch = tf.placeholder(tf.float32) reg_weight_ph = tf.placeholder(tf.float32) reg_loss = regularization.l12_smooth( prop_d.get_weights()) + regularization.l12_smooth(prop_v.get_weights()) # Training learning_rate_ph = tf.placeholder(tf.float32) opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph) def define_loss(prop_output, length): error = tf.losses.mean_squared_error( labels=y_input[:, :length, :], predictions=prop_output[:, :length, :]) loss = error + reg_weight_ph * reg_loss train = opt.minimize(loss) train = tf.group([train, encoder.bn.updates]) return error, loss, train error_start, loss_start, train_start = define_loss(y_hat_start, timesteps0) error_full, loss_full, train_full = define_loss(y_hat_full, timesteps) # Training session config = tf.ConfigProto() config.gpu_options.allow_growth = True # Take up variable amount of memory on GPU with tf.Session(config=config) as sess: loss_i = np.nan while np.isnan(loss_i): loss_list = [] error_list = [] reg_list = [] error, loss, train = error_start, loss_start, train_start sess.run(tf.global_variables_initializer()) for i in range(n_epochs1): feed_dict = { x_input: x, prop_input: y0, y_input: label_data, epoch: 0, learning_rate_ph: learning_rate, training: True, reg_weight_ph: reg_weight } _ = sess.run(train, feed_dict=feed_dict) if i % summary_step == 0: feed_dict[training] = False print_loss, print_error, print_l12 = sess.run( (loss, error, reg_loss), feed_dict=feed_dict) loss_list.append(print_loss) error_list.append(print_error) reg_list.append(print_l12) print("Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f" % (i, print_loss, print_error, print_l12)) loss_i = print_loss if i > 2000: error, loss, train = error_full, loss_full, train_full if np.isnan(loss_i): break # Setting small weights to 0 and freezing them prop_d_masked = MaskedSymbolicNet(sess, prop_d, threshold=0.1) prop_v_masked = MaskedSymbolicNet(sess, prop_v, threshold=0.1) # Rebuilding the decoding propagator prop_output_masked = rec_sr(prop_input, z, timesteps, prop_d_masked, prop_v_masked) error, loss, train = define_loss(prop_output_masked, timesteps) weights_d = sess.run(prop_d_masked.get_weights()) expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1]) print(expr_d) weights_v = sess.run(prop_v_masked.get_weights()) expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1]) print(expr_v) print("Frozen weights. Next stage of training.") for i in range(n_epochs2): feed_dict = { x_input: x, prop_input: y0, y_input: label_data, epoch: 0, learning_rate_ph: learning_rate / 10, training: True, reg_weight_ph: 0 } _ = sess.run(train, feed_dict=feed_dict) if i % summary_step == 0: feed_dict[training] = False print_loss, print_error, print_l12 = sess.run( (loss, error, reg_loss), feed_dict=feed_dict) loss_list.append(print_loss) error_list.append(print_error) reg_list.append(print_l12) print("Epoch %d\tError: %g" % (i, print_error)) weights_d = sess.run(prop_d_masked.get_weights()) expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1]) print(expr_d) weights_v = sess.run(prop_v_masked.get_weights()) expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1]) print(expr_v) # Save results results = { "timesteps": timesteps, "summary_step": summary_step, "learning_rate": learning_rate, "n_epochs1": n_epochs1, "n_epochs2": n_epochs2, "reg_weight_ph": reg_weight, "weights_d": weights_d, "weights_v": weights_v, "loss_plot": loss_list, "error_plot": error_list, "l12_plot": reg_list, "expr_d": expr_d, "expr_v": expr_v } trial_dir = helpers.get_trial_path( results_dir) # Get directory in which to save trial results tf.saved_model.simple_save(sess, trial_dir, inputs={ "x": x_input, "y0": prop_input, "training": training }, outputs={ "z": z, "y": y_hat_full }) # Save a summary of the parameters and results with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f: pickle.dump(results, f)
def main(results_dir='results/kinematics/test', learning_rate=1e-2, reg_weight=1e-3, n_epochs=10001, timesteps=5): tf.reset_default_graph() # Hyperparameters summary_step = 1000 # tf.set_random_seed(0) # Import parabola data data = np.load('dataset/kinematic.npz') x_d = np.asarray(data["x_d"]) x_v = np.asarray(data["x_v"]) y_d = np.asarray(data["y_d"]) y_v = np.asarray(data["y_v"]) a_data = np.asarray(data["g"]) # Prepare data # The first few time steps are reserved for the symbolic regression propagator x = np.stack((x_d, x_v), axis=2) # Shape (N, NT, 2) y0 = np.stack((y_d[:, 0], y_v[:, 0]), axis=1) # Input into the symbolic propagator y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]), axis=2) # shape(NG, LENGTH, 2) # Encoder encoder = helpers.Encoder() # layer should end with 1, which is the output x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]), dtype=tf.float32, name="enc_input") y_input = tf.placeholder(shape=(None, timesteps, 2), dtype=tf.float32, name="label_input") y0_input = tf.placeholder(shape=(None, 2), dtype=tf.float32, name="y_input") # input is d, v length_input = tf.placeholder(dtype=tf.int32, shape=()) training = tf.placeholder_with_default(False, []) z = encoder(x_input, training=training) # enc_output = np.array(g_data)[:, np.newaxis] # uncomment to ignore the autoencoder # Build EQL network for the propagating decoder primitive_funcs = [ *[functions.Constant()] * 2, *[functions.Identity()] * 4, *[functions.Square()] * 4, *[functions.Sin()] * 2, *[functions.Exp()] * 2, *[functions.Sigmoid()] * 2, *[functions.Product(norm=0.1)] * 2, ] prop_d = SymbolicNetL0(2, funcs=primitive_funcs) prop_v = SymbolicNetL0(2, funcs=primitive_funcs) prop_d.build(4) prop_v.build(4) # Build recurrent structure rnn = tf.keras.layers.RNN(SymbolicCell(prop_d, prop_v), return_sequences=True) y0_rnn = tf.concat([tf.expand_dims(y0_input, axis=1), tf.zeros((tf.shape(y0_input)[0], length_input - 1, 2))], axis=1) prop_input = tf.concat([y0_rnn, tf.keras.backend.repeat(z, length_input), tf.ones((tf.shape(y0_input)[0], length_input, 1))], axis=2) y_hat = rnn(prop_input) # Label and errors reg_loss = prop_d.get_loss() + prop_v.get_loss() # Training learning_rate_ph = tf.placeholder(tf.float32) opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph) error = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=y_hat) loss = error + reg_weight * reg_loss train = opt.minimize(loss) train = tf.group([train, encoder.bn.updates]) # Training session config = tf.ConfigProto() config.gpu_options.allow_growth = True # Take up variable amount of memory on GPU with tf.Session(config=config) as sess: loss_i = np.nan while np.isnan(loss_i): loss_list = [] error_list = [] reg_list = [] sess.run(tf.global_variables_initializer()) length_i = 1 for i in range(n_epochs): lr_i = learning_rate feed_dict = {x_input: x, y0_input: y0, y_input: y_data, learning_rate_ph: lr_i, training: True, length_input: length_i} _ = sess.run(train, feed_dict=feed_dict) if i % summary_step == 0: feed_dict[training] = False loss_val, error_val, reg_val = sess.run((loss, error, reg_loss), feed_dict=feed_dict) loss_list.append(loss_val) error_list.append(error_val) reg_list.append(reg_val) print("Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f" % (i, loss_val, error_val, reg_val)) loss_i = loss_val if i > 3000: length_i = timesteps if np.isnan(loss_i): break weights_d = sess.run(prop_d.get_weights()) expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1]) print(expr_d) weights_v = sess.run(prop_v.get_weights()) expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1]) print(expr_v) # z_arr = sess.run(enc_output, feed_dict=feed_dict) # Save results results = { "timesteps": timesteps, "summary_step": summary_step, "learning_rate": learning_rate, "N_EPOCHS": n_epochs, "reg_weight": reg_weight, "weights_d": weights_d, "weights_v": weights_v, "loss_plot": loss_list, "error_plot": error_list, "l12_plot": reg_list, "expr_d": expr_d, "expr_v": expr_v } trial_dir = helpers.get_trial_path(results_dir) # Get directory in which to save trial results tf.saved_model.simple_save(sess, trial_dir, inputs={"x": x_input, "y0": y0_input, "training": training}, outputs={"z": z, "y": y_hat}) # Save a summary of the parameters and results with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f: pickle.dump(results, f)
def train_add_test(func=lambda a, b: a+b, results_dir=None, reg_weight=5e-2, learning_rate=1e-2, n_epochs=10001): """Addition of two MNIST digits with a symbolic regression network. Withold sums > 15 for test data""" tf.reset_default_graph() # Symbolic regression network to combine the conv net outputs PRIMITIVE_FUNCS = [ *[functions.Constant()] * 2, *[functions.Identity()] * 4, *[functions.Square()] * 4, *[functions.Sin()] * 2, *[functions.Exp()] * 2, *[functions.Sigmoid()] * 2, # *[functions.Product()] * 2, ] sr_net = symbolic_network.SymbolicNet(2, funcs=PRIMITIVE_FUNCS) # Symbolic regression network # Overall architecture sym_digit_network = SymbolicDigit(sr_net=sr_net, normalize=normalize) # Set up regularization term and training penalty = regularization.l12_smooth(sr_net.get_weights()) epoch = tf.placeholder_with_default(0.0, []) penalty = tf.sin(np.pi / n_epochs / 1.1 * epoch) ** 2 * regularization.l12_smooth(sr_net.get_weights()) penalty = reg_weight * penalty sym_digit_network.set_training(reg=penalty) config = tf.ConfigProto() config.gpu_options.allow_growth = True # Take up variable amount of memory on GPU sess = tf.Session(config=config) batch = batch_generator(batch_size=100) def train_fun(y): return y < 15 def test_fun(y): return np.logical_not(train_fun(y)) # Train, and restart training if loss goes to NaN loss_i = np.nan while np.isnan(loss_i): sess.run(tf.global_variables_initializer()) loss_i = sym_digit_network.train(sess, n_epochs, batch, func, epoch, lr_val=learning_rate, train_fun=train_fun) if np.isnan(loss_i): continue # Freezing weights sr_net_masked = symbolic_network.MaskedSymbolicNet(sess, sr_net, threshold=0.01) sym_digit_network = SymbolicDigitMasked(sym_digit_network, sr_net_masked, normalize=normalize) sym_digit_network.set_training() loss_i = sym_digit_network.train(sess, n_epochs, batch, func, lr_val=learning_rate/10, train_fun=train_fun) # Print out human-readable equation (with regularization) weights = sess.run(sr_net.get_weights()) expr = pretty_print.network(weights, PRIMITIVE_FUNCS, ["z1", "z2"]) expr = normalize(expr) print(expr) # Calculate accuracy on test dataset acc_train, error_train = sym_digit_network.calc_accuracy(X_train, y_train, func, sess) acc_train1, error_train1 = sym_digit_network.calc_accuracy(X_train, y_train, func, sess, filter_fun=train_fun) acc_train2, error_train2 = sym_digit_network.calc_accuracy(X_train, y_train, func, sess, filter_fun=test_fun) acc_test, error_test = sym_digit_network.calc_accuracy(X_test, y_test, func, sess) acc_test1, error_test1 = sym_digit_network.calc_accuracy(X_test, y_test, func, sess, filter_fun=train_fun) acc_test2, error_test2 = sym_digit_network.calc_accuracy(X_test, y_test, func, sess, filter_fun=test_fun) result_str = "Train digits overall accuracy: %.3f\ttrain sum accuracy: %.3f\t test sum accuracy: %.3f\n" \ "Train digits overall error: %.3f\ttrain sum error: %.3f\t test sum error: %.3f\n" \ "Test digits overall accuracy: %.3f\ttrain sum accuracy: %.3f\t test sum accuracy: %.3f\n" \ "Test digits overall error: %.3f\ttrain sum error: %.3f\t test sum error: %.3f\n" % \ (acc_train, acc_train1, acc_train2, error_train, error_train1, error_train2, acc_test, acc_test1, acc_test2, error_test, error_test1, error_test2) print(result_str) sym_digit_network.save_result(sess, results_dir, expr, result_str)
def main(results_dir='results/sho/test', trials=20, learning_rate=1e-3, reg_weight=1e-3, timesteps=25, batch_size=128, n_epochs1=10001, n_epochs2=10001): # Hyperparameters summary_step = 1000 primitive_funcs = [ *[functions.Constant()] * 2, *[functions.Identity()] * 4, *[functions.Square()] * 4, *[functions.Sin()] * 2, *[functions.Exp()] * 2, *[functions.Sigmoid()] * 2, *[functions.Product(norm=0.1)] * 2, ] # Import parabola data data = np.load('dataset/sho.npz') x_d = np.asarray(data["x_d"]) x_v = np.asarray(data["x_v"]) y_d = np.asarray(data["y_d"]) y_v = np.asarray(data["y_v"]) omega2_data = data["omega2"] N = data["N"] # Prepare data x = np.stack((x_d, x_v), axis=2) # Shape (N, NT, 2) y0 = np.stack( (y_d[:, 0], y_v[:, 0]), axis=1) # Initial conditions for prediction y, fed into propagator y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]), axis=2) # shape(NG, timesteps, 2) z_data = omega2_data[:, np.newaxis] # Tensorflow placeholders for x, y0, y x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]), dtype=tf.float32, name="enc_input") y0_input = tf.placeholder(shape=(None, 2), dtype=tf.float32, name="prop_input") # input is d, v y_input = tf.placeholder(shape=(None, timesteps, 2), dtype=tf.float32, name="label_input") length_input = tf.placeholder(dtype=tf.int32, shape=()) # Dynamics encoder encoder = helpers.Encoder(n_filters=[16, 16, 16, 16]) training = tf.placeholder_with_default(False, []) z = encoder(x_input, training=training) # Propagating decoders prop_d = SymbolicNetL0(2, funcs=primitive_funcs) prop_v = SymbolicNetL0(2, funcs=primitive_funcs) prop_d.build(4) prop_v.build(4) # Building recurrent structure rnn = tf.keras.layers.RNN(SymbolicCell(prop_d, prop_v), return_sequences=True) y0_rnn = tf.concat([ tf.expand_dims(y0_input, axis=1), tf.zeros((tf.shape(y0_input)[0], length_input - 1, 2)) ], axis=1) prop_input = tf.concat([ y0_rnn, tf.keras.backend.repeat(z, length_input), tf.ones((tf.shape(y0_input)[0], length_input, 1)) ], axis=2) y_hat = rnn(prop_input) length_list = [1, 2, 3, 4, 5, 7, 10, 15, 25] # Slowly increase the length of propagation # Training learning_rate_ph = tf.placeholder(tf.float32) opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph) reg_weight_ph = tf.placeholder(tf.float32) reg_loss = prop_d.get_loss() + prop_v.get_loss() error = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=y_hat) loss = error + reg_weight_ph * reg_loss train = tf.group([opt.minimize(loss), encoder.bn.updates]) batch = helpers.batch_generator([x, y_data, y0, z_data], N=N, batch_size=batch_size) # Training session config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: for _ in range(trials): loss_i = np.nan while np.isnan(loss_i): loss_list = [] error_list = [] reg_list = [] sess.run(tf.global_variables_initializer()) length_i = 1 for i in range(n_epochs1 + n_epochs2): if i < n_epochs1: lr_i = learning_rate else: lr_i = learning_rate / 10 x_batch, y_batch, y0_batch, z_batch = next(batch) feed_dict = { x_input: x_batch, y0_input: y0_batch, y_input: y_batch, learning_rate_ph: lr_i, training: True, reg_weight_ph: reg_weight, length_input: length_i } _ = sess.run(train, feed_dict=feed_dict) if i % summary_step == 0: feed_dict[training] = False loss_i, error_i, reg_i, z_arr = sess.run( (loss, error, reg_loss, z), feed_dict=feed_dict) r = np.corrcoef(z_batch[:, 0], z_arr[:, 0])[1, 0] loss_list.append(loss_i) error_list.append(error_i) reg_list.append(reg_i) print( "Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f\tCorrelation: %f" % (i, loss_i, error_i, reg_i, r)) if np.isnan(loss_i): break i_length = min(i // 1000, len(length_list) - 1) length_i = length_list[i_length] weights_d = sess.run(prop_d.get_weights()) expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1]) print(expr_d) weights_v = sess.run(prop_v.get_weights()) expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1]) print(expr_v) print("Done. Saving results.") # z_arr = sess.run(z, feed_dict=feed_dict) # Save results results = { "summary_step": summary_step, "learning_rate": learning_rate, "n_epochs1": n_epochs1, "reg_weight": reg_weight, "timesteps": timesteps, "weights_d": weights_d, "weights_v": weights_v, "loss_plot": loss_list, "error_plot": error_list, "reg_plot": reg_list, "expr_d": expr_d, "expr_v": expr_v } trial_dir = helpers.get_trial_path( results_dir) # Get directory in which to save trial results tf.saved_model.simple_save(sess, trial_dir, inputs={ "x": x_input, "y0": y0_input, "training": training }, outputs={ "z": z, "y": y_hat }) # Save a summary of the parameters and results with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f: pickle.dump(results, f) with open(os.path.join(results_dir, 'eq_summary.txt'), 'a') as f: f.write(str(expr_d) + "\n") f.write(str(expr_v) + "\n") f.write("Error: %f\n\n" % error_list[-1])
def get_hidden_weights(self): return [self.hidden_layers[i].get_weight() for i in range(self.depth)] def get_output_weight(self): return self.output_weight def get_weights_tensor(self): """Return list of weight matrices as tensors""" return [self.hidden_layers[i].get_weight_tensor() for i in range(self.depth)] + \ [self.output_weight.clone()] if __name__ == '__main__': n_layers = 2 activation_funcs = [ *[functions.Constant()] * 2, *[functions.Identity()] * 4, *[functions.Square()] * 4, # *[functions.Sin()] * 2, # *[functions.Exp()] * 2, # *[functions.Sigmoid()] * 2, # *[functions.Product()] * 2 ] var_names = ["x", "y", "z"] func = lambda x: x x_dim = len(signature(func).parameters) # Number of input arguments to the function N = 10 x = torch.rand((N, x_dim)) * 2 - 1 width = len(activation_funcs)