コード例 #1
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
    def test_sum_func(self):
        with connection.cursor() as cursor:
            cursor.execute("""
                SELECT SUM(quantity) AS items_ordered
                FROM OrderItems;
                """)
            """
            说明: NULL值
                SUM()函数忽略列值为NULL的行.
            """
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
                {'items_ordered': Decimal('1430')}
                """

            print("=" * 60)

            cursor.execute("""
                SELECT SUM(quantity * item_price) AS total_price
                FROM OrderItems;
                """)
            """
            说明: NULL值
                SUM()函数忽略列值为NULL的行.
            """
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
コード例 #2
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
    def test_count_func(self):
        with connection.cursor() as cursor:
            cursor.execute("""
                SELECT COUNT(*) AS num_cust 
                FROM Customers;
                """)
            """
            - 使用COUNT(*)对表中行的数目进行计数,不管表列中包含的是空值(NULL)还是非空值.
            - 使用COUNT(column)对特定列中具有值的行进行计数, 忽略NULL值.
            """
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
                {'num_cust': 5}
                """

            print("=" * 60)

            cursor.execute("""
                SELECT COUNT(cust_email) AS num_cust 
                FROM Customers;
                """)
            """
            - 使用COUNT(column)对特定列中具有值的行进行计数, 忽略NULL值.
            """
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
コード例 #3
0
    def test_optimize_or(self):
        """
        优化OR条件查询
            对于含有OR的查询子句,如果要利用索引,则OR之间的每个条件列都必须用到索引;
            如果没有索引,则应该考虑增加索引.
        """
        # 例子1: 当在建有复合索引的列store_id和film_id上面做OR操作,
        #       是不能用到索引idx_store_id_film_id
        with connection.cursor() as cursor:
            cursor.execute("""
                explain 
                select * 
                from inventory 
                where store_id<10 or film_id<10;
                """)
            for result in dictfetchall(cursor):
                print(result)
            _ = {
                "id": 1,
                "select_type": "SIMPLE",
                "table": "inventory",
                "partitions": None,
                "type": "ALL",
                "possible_keys":
                "idx_store_id_film_id,inventory_film_id_609e926a_fk_film_film_id",
                "key": None,
                "key_len": None,
                "ref": None,
                "rows": 4581,
                "filtered": 55.55,
                "Extra": "Using where",
            }

        # 例子2: 当在建有独立索引的列last_name和customer_id上面做OR操作,
        #       是可以正确地用到索引,MySQL处理含有OR的查询实际是对OR的各个
        #       字段分别查询后的结果进行了UNION操作.
        with connection.cursor() as cursor:
            cursor.execute("""
                explain 
                select * 
                from customer 
                where last_name='MORGAN' or customer_id<10;
                """)
            for result in dictfetchall(cursor):
                print(result)
            _ = {
                "id": 1,
                "select_type": "SIMPLE",
                "table": "customer",
                "partitions": None,
                "type": "index_merge",
                "possible_keys": "PRIMARY,idx_last_name",
                "key": "idx_last_name,PRIMARY",
                "key_len": "182,2",
                "ref": None,
                "rows": 10,
                "filtered": 100.0,
                "Extra": "Using union(idx_last_name,PRIMARY); Using where",
            }
コード例 #4
0
    def test_mrr(self):
        """
        利用MRR优化JOIN操作
        """

        with connection.cursor() as cursor:

            cursor.execute(
                f"desc select * from payment where customer_id between 1 and 200;"
            )

            for result in dictfetchall(cursor):
                print(result)
            _ = {
                "id": 1,
                "select_type": "SIMPLE",
                "table": "payment",
                "partitions": None,
                "type": "ALL",
                "possible_keys":
                "payment_customer_id_cfa68abe_fk_customer_customer_id",
                "key": None,
                "key_len": None,
                "ref": None,
                "rows": 16049,
                "filtered": 33.92,
                "Extra": "Using where",  # 没有使用MRR(using MRR)
            }

            # 通过设置mrr和mrr_cost_based这两个优化器参数使用MRR
            cursor.execute("set optimizer_switch='mrr=on,mrr_cost_based=off';")
            # mrr参数控制MRR特性是否打开(默认on);
            # mrr_cost_based控制是否根据优化器的计算成本来觉得使用MRR特性(默认on);
            # 如果希望尽可能使用MRR,可以将此参数设置为off.

            cursor.execute(
                f"desc select * from payment where customer_id between 1 and 200;"
            )

            for result in dictfetchall(cursor):
                print(result)
            _ = {
                "id": 1,
                "select_type": "SIMPLE",
                "table": "payment",
                "partitions": None,
                "type": "range",
                "possible_keys":
                "payment_customer_id_cfa68abe_fk_customer_customer_id",
                "key": "payment_customer_id_cfa68abe_fk_customer_customer_id",
                "key_len": "2",
                "ref": None,
                "rows": 5444,
                "filtered": 100.0,
                "Extra": "Using index condition; Using MRR",  # 成功使用MRR
            }
コード例 #5
0
 def test_count_func(self):
     with connection.cursor() as cursor:
         cursor.execute("""
             SELECT cust_name, cust_state, (
                 SELECT COUNT(*)
                 FROM Orders
                 WHERE Orders.cust_id = Customers.cust_id
             ) AS orders
             FROM Customers
             ORDER BY cust_name;
             """)
         """
         分析 ▼
             这条SELECT语句对Customers表中每个顾客返回三列:cust_name、cust_state和orders。
             orders是一个计算字段,它是由圆括号中的子査询建立的。该子查询对检索出的每个顾客执行一
             次。在此例中,该子查询执行了5次,因为检索出了5个顾客。
             
             子查询中的WHERE子句与前面使用的WHERE子句稍有不同,因为它使用了完全限定列名,而不只是
             列名(cust_id)。它指定表名和列名(Orders.cust_id和Customers.cust_id)。下面的
             WHERE子句告诉SQL,比较Orders表中的cust_id和当前正从Customers表中检索的cust_id:
             
             WHERE Orders.cust_id = Customers.cust_id
         """
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
             {'cust_name': 'Fun4All', 'cust_state': 'IN', 'orders': 1}
             {'cust_name': 'Fun4All', 'cust_state': 'AZ', 'orders': 1}
             {'cust_name': 'Kids Place', 'cust_state': 'OH', 'orders': 0}
             {'cust_name': 'The Toy Store', 'cust_state': 'IL', 'orders': 1}
             {'cust_name': 'Village Toys', 'cust_state': 'MI', 'orders': 2}
             """
         """
コード例 #6
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
 def test_trim_func(self):
     with connection.cursor() as cursor:
         """
         如果想去掉返回的数据不需要的空格.可用使用TRIM函数
         大多数DBMS都支持:
         TRIM() :去掉字符串左右两边的空格.
         LTRIM():去掉字符串左两边的空格.
         RTRIM():去掉字符串右两边的空格.
         """
         # 使用MySQL或MariaDB时需要使用的语句:
         cursor.execute("""
             SELECT CONCAT(vend_name, TRIM('  (  '), vend_country, RTRIM(')  '))
             AS 'vend title'
             FROM Vendors
             ORDER BY vend_name;
         """)
         """
         注意: 别名
             别名的名字既可以是一个单词,也可用是一个字符串.如果是后者(譬如vend title),
             字符串应该括在引号中.虽然这种做法是合法的,但不建议这么去做.多单词的名字可读
             性高,不过会给客户端应用带来各种问题.因此,别名最常见的使用是将多个单词的列名
             重命名为一个单词的名字.
         """
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #7
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
 def test_exercise1(self):
     """
     1. Using INSERT and columns specified, add yourself to the Customers table.
     """
     with connection.cursor() as cursor:
         cursor.execute("""
             INSERT INTO Customers(
                 cust_id, 
                 cust_name, 
                 cust_address, 
                 cust_city, 
                 cust_state, 
                 cust_zip, 
                 cust_country
             )
             VALUES (
                 1000000007,
                 'Me Gustas',
                 '广东',
                 '广州',
                 'GD',
                 '529999',
                 'CHA'
             );
         """)
         cursor.execute("""
         SELECT *
         FROM Customers
         WHERE cust_id = 1000000007;
         """)
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #8
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
    def test_value_order_by(self):
        with connection.cursor() as cursor:
            cursor.execute("""
                SELECT 
                vend_id, prod_price
                FROM 
                Products 
                WHERE
                vend_id = 'DLL01' OR vend_id = 'BRS01' AND prod_price >= 10;
                """)
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
                {'vend_id': 'BRS01', 'prod_price': Decimal('11.99')}
                {'vend_id': 'DLL01', 'prod_price': Decimal('3.49')}
                {'vend_id': 'DLL01', 'prod_price': Decimal('3.49')}
                {'vend_id': 'DLL01', 'prod_price': Decimal('3.49')}
                {'vend_id': 'DLL01', 'prod_price': Decimal('4.99')}
                """
            """
            结果:
                返回的行中有4行价格小于10美元, 显然返回的行未按预期的进行过滤.
            错误示范的结果解释:
                原因在于求值的顺序. SQL(像多数语言一样)在处理OR操作符前,优先处理AND操作符.
                当SQL看到上述WHERE子句时,它理解为:由供应商BRS01制造的价格为10美元以上的所
                有产品,以及由供应商DLL01制造的所有产品,而不管其价格如何.
            """

            print("=" * 60)
            cursor.execute("""
                SELECT 
                vend_id, prod_price
                FROM 
                Products 
                WHERE
                (vend_id = 'DLL01' OR vend_id = 'BRS01') AND prod_price >= 10;
                """)
            """
            解决方法: 使用圆括号对操作符进行明确分组. 因为圆括号具有比AND或OR操作符更高的优先级.
            提示:
                任何时候使用具有AND和OR操作符的WHERE子句,都应该使用圆括号
                明确地分组操作符.不要过分依赖默认求值顺序,即使它确实如你希
                望的那样.使用圆括号没有任何坏处,它能消除歧义.
            """
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
コード例 #9
0
            def dorp_partition(self, cursor, partition):

                min_partition: str = min(partition, key=lambda x: x.replace("p", ""))
                cursor.execute(f"ALTER TABLE TestTable DROP PARTITION {min_partition};")
                cursor.execute(self.check_partitions)
                for result in dictfetchall(cursor):
                    print(result)
                    """
コード例 #10
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
    def test_sort_data_desc(self):
        """
        如果想再多个列上进行降序排序, 必须对每一列指定DESC关键字
        """
        with connection.cursor() as cursor:
            cursor.execute("""
            SELECT 
            prod_price, prod_name, prod_id 
            FROM 
            Products 
            ORDER BY 
            prod_price
            DESC;
            """)
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
                {'prod_price': Decimal('11.99'), 'prod_name': '18 inch teddy bear', 'prod_id': 'BR03'}
                {'prod_price': Decimal('9.49'), 'prod_name': 'King doll', 'prod_id': 'RYL01'}
                {'prod_price': Decimal('9.49'), 'prod_name': 'Queen doll', 'prod_id': 'RYL02'}
                {'prod_price': Decimal('8.99'), 'prod_name': '12 inch teddy bear', 'prod_id': 'BR02'}
                {'prod_price': Decimal('5.99'), 'prod_name': '8 inch teddy bear', 'prod_id': 'BR01'}
                {'prod_price': Decimal('4.99'), 'prod_name': 'Raggedy Ann', 'prod_id': 'RGAN01'}
                {'prod_price': Decimal('3.49'), 'prod_name': 'Fish bean bag toy', 'prod_id': 'BNBG01'}
                {'prod_price': Decimal('3.49'), 'prod_name': 'Bird bean bag toy', 'prod_id': 'BNBG02'}
                {'prod_price': Decimal('3.49'), 'prod_name': 'Rabbit bean bag toy', 'prod_id': 'BNBG03'}
                """

            print("=" * 60)

            # 多列排序, 某个列为顺序, 某个列为降序
            cursor.execute("""
            SELECT 
            prod_price, prod_name, prod_id 
            FROM 
            Products 
            ORDER BY 
            prod_price DESC,
            prod_name;
            """)
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
コード例 #11
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
 def test_multiple_column_sort_data(self):
     with connection.cursor() as cursor:
         cursor.execute("""
         SELECT 
         prod_id, prod_price, prod_name 
         FROM 
         Products 
         ORDER BY 
         prod_price, prod_name;
         """)
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #12
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
    def test_show_query_log(self):
        """
        慢查询日志配置
        默认情况下slow_query_log的值为OFF,表示慢查询日志是禁用的,可以通过设置slow_query_log的值来开启
        使用set global slow_query_log=1开启了慢查询日志只对当前数据库生效,如果MySQL重启后则会失效。如果
        要永久生效,就必须修改配置文件my.cnf(其它系统变量也是如此)。
        如果不是调优需要的话,一般不建议启动该参数,因为开启慢查询日志会或多或少带来一定的性能影响。
        """

        with connection.cursor() as cursor:
            cursor.execute("show variables like '%slow_query_log%';")
            for result in dictfetchall(cursor):
                print(result)
                """
                {'Variable_name': 'slow_query_log', 'Value': 'OFF'}
                {'Variable_name': 'slow_query_log_file', 'Value': '/var/lib/mysql/9535a632d1ca-slow.log'}
                """
            cursor.execute("set global slow_query_log=1")
            cursor.execute("show variables like '%slow_query_log%';")
            for result in dictfetchall(cursor):
                print(result)
                """
コード例 #13
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
    def test_table_alias(self):
        with connection.cursor() as cursor:
            cursor.execute("""
                SELECT cust_name, cust_contact
                FROM Customers C, Orders O, OrderItems OI
                WHERE C.cust_id = O.cust_id
                AND OI.order_num = O.order_num
                AND prod_id = 'RGAN01'
            """)

            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
コード例 #14
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
 def test_combination(self):
     with connection.cursor() as cursor:
         cursor.execute("""
             SELECT 
             COUNT(*) AS num_items,
             MAX(prod_price) AS max_price,
             MIN(prod_price) AS min_price,
             AVG(prod_price) AS avg_price
             FROM Products;
             """)
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #15
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
    def test_self_join(self):
        """
        假如要给与Jim Jones同一公司的所有顾客发送一封信件。这个查询要求
        首先找出JimJones工作的公司,然后找出在该公司工作的顾客。下面是
        解决此问题的一种方法:
        """
        with connection.cursor() as cursor:
            cursor.execute("""
                SELECT C1.cust_name, C1.cust_contact, C2.cust_contact AS contact2
                FROM Customers C1
                INNER JOIN Customers C2 ON C1.cust_name = C2.cust_name
                WHERE C2.cust_contact = 'Jim Jones'
                ORDER BY C1.cust_name;
                """)
            """
            提示:用自联结而不用子查询
                自联结通常作为外部语句,用来替代从相同表中检索数据的使用子查
                询语句. 虽然最终的结果是相同的,但许多DBMS处理联结远比处理
                子查询快得多应该试一下两种方法,以确定哪一种的性能更好。
            """
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
                {'cust_id': '1000000003', 'cust_name': 'Fun4All', 'cust_contact': 'Jim Jones'}
                {'cust_id': '1000000004', 'cust_name': 'Fun4All', 'cust_contact': 'Denise L. Stephens'}
                """

            print("=" * 60)

            cursor.execute("""
                SELECT C1.cust_name, C1.cust_contact, C2.cust_contact AS contact2
                FROM Customers C1
                INNER JOIN Customers C2 ON C1.cust_name = C2.cust_name
                # WHERE C2.cust_contact = 'Jim Jones'
                ORDER BY C1.cust_name;
                """)
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
コード例 #16
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
    def test_group_by_connection(self):
        """
        聚合函数也可以与联结一起使用.

        """
        with connection.cursor() as cursor:
            cursor.execute("""
                SELECT Customers.cust_id, COUNT(O.order_num) AS num_ord
                FROM Customers
                INNER JOIN Orders O on Customers.cust_id = O.cust_id
                GROUP BY Customers.cust_id;
                """)
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """

                """
            """
            分析 ▼
                这条SELECT语句使用INNER JOIN将Customers和Orders表互相关联。 
                GROUP BY子句按顾客分组数据,因此,函数调用COUNT(O.order_num)
                对每个顾客的订单计数,将它作为num_ord返回。
            """
            print("=" * 60)

            # 聚集函数也可以方便地与其他联结一起使用。请看下面的例子
            cursor.execute("""
                SELECT Customers.cust_id, COUNT(O.order_num) AS num_ord
                FROM Customers
                LEFT OUTER JOIN Orders O on Customers.cust_id = O.cust_id
                GROUP BY Customers.cust_id;
                """)
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """

                """
            """
コード例 #17
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
    def test_show_processlist(self):
        """
        show processlist 是显示用户正在运行的线程,实时地查看SQL语句的执行情况,
        需要注意的是,除了 root 用户能看到所有正在运行的线程外,其他用户都只能看到
        自己正在运行的线程,看不到其它用户正在运行的线程。除非单独个这个用户赋予了
        PROCESS 权限。
        https://zhuanlan.zhihu.com/p/30743094
        """

        with connection.cursor() as cursor:
            cursor.execute("show processlist;")
            for result in dictfetchall(cursor):
                print(result)
                """
コード例 #18
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
    def test_avg_func(self):
        """
        说明:
            AVG()函数忽略列值为NULL的行.

        注意: 只用于单个列
            AVG()只能用来确定特定数值列的平均值,而且列名必须作为函数参数
            给出.为了获得多个列的平均值,必须使用多个AVG()函数.只有一个例
            外是要从多个列计算出一个值. 下面会说.
        """
        with connection.cursor() as cursor:
            cursor.execute("""
                SELECT AVG(prod_price) AS avg_price 
                FROM Products;
                """)
            """
            AVG(): 返回某列的平均值
            """
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
                {'avg_price': Decimal('6.823333')}
                """

            print("=" * 60)

            cursor.execute("""
                SELECT AVG(prod_price) AS avg_price 
                FROM Products
                WHERE vend_id = 'DLL01';
                """)
            """
            返回某列过滤后的平均值
            """
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
コード例 #19
0
            def add_partition(self, cursor, partition):

                max_partition: str = max(partition, key=lambda x: x.replace("p", ""))
                next_range = int(max_partition.replace('p', '')) + 1
                next_partition: str = f"p{90}"
                range_fun = lambda x: 10 * x + 1995
                cursor.execute(f"""
                    ALTER TABLE TestTable ADD PARTITION (
                        PARTITION {next_partition} VALUES LESS THAN ({range_fun(next_range)})
                    );
                """)
                cursor.execute(self.check_partitions)
                for result in dictfetchall(cursor):
                    print(result)
                    """
コード例 #20
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
 def test_and_operator(self):
     with connection.cursor() as cursor:
         cursor.execute("""
             SELECT 
             prod_id, prod_name, prod_price 
             FROM 
             Products 
             WHERE
             vend_id = 'DLL01' AND prod_price <= 4;
             """)
         """
         AND: 用在WHERE子句中的关键字,用来指示检索满足所有给定条件的行.
         """
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #21
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
 def test_or_operator(self):
     with connection.cursor() as cursor:
         cursor.execute("""
             SELECT 
             prod_id, prod_name, prod_price 
             FROM 
             Products 
             WHERE
             vend_id = 'DLL01' OR vend_id = 'BRS01';
             """)
         """
         OR: 与AND相反,OR操作符告诉DBMS匹配任一条件而不是同时匹配两个条件.
         """
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #22
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
 def test_case_when(self):
     """根据条件改变输入值"""
     with connection.cursor() as cursor:
         cursor.execute("""
             SELECT (quantity*item_price) AS total,
             CASE 
                 WHEN (quantity*item_price) >= 1000 THEN '大买入'
                 WHEN (quantity*item_price) >= 500 THEN '中买入'
                 WHEN (quantity*item_price) >= 100 THEN '小买入'
                 ELSE '忽略买入'
             END AS '评价'
             FROM OrderItems;
             """)
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #23
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
 def test_not_operator(self):
     with connection.cursor() as cursor:
         cursor.execute("""
             SELECT vend_id, prod_name
             FROM Products 
             WHERE NOT vend_id = 'DLL01'
             ORDER BY prod_name;
             """)
         """
         NOT: 该关键字在WHERE子句中用来否定其后条件
             在复杂的子句中, NOT非常有用. 
             譬如, 在与IN操作符联合使用时,NOT可以非常简单地找出与条件列表不匹配得行
         """
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #24
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
 def test_min_func(self):
     with connection.cursor() as cursor:
         cursor.execute("""
             SELECT MIN(prod_price) AS min_price 
             FROM Products;
             """)
         """
         提示: 对非数值数据使用MIN()
             虽然MIN()一般用来找出最小的数值或日期值,但许多(并非所有)DBMS允许将它用来
             返回任意列中的最小值,包括返回文本列中的最小值.用于文本数据时,MIN()返回按
             该列排序后的最前一行.
         说明: NULL值
             MIN()函数忽略列值为NULL的行.
         """
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #25
0
            def view_table_row(self, cursor) -> List[str]:

                cursor.execute("""
                    INSERT INTO TestTable VALUES ("1994"), ("2017");
                """)
                cursor.execute(self.check_partitions)
                partition: list = []  # 收集分区的名称
                for result in dictfetchall(cursor):
                    print(result)
                    partition.append(result["PARTITION_NAME"])
                    """
                    {'PARTITION_NAME': 'p0', 'descr': '1995', 'position': 1, 'TABLE_ROWS': 1}
                    {'PARTITION_NAME': 'p1', 'descr': '2005', 'position': 2, 'TABLE_ROWS': 0}
                    {'PARTITION_NAME': 'p2', 'descr': '2015', 'position': 3, 'TABLE_ROWS': 0}
                    {'PARTITION_NAME': 'p3', 'descr': '2025', 'position': 4, 'TABLE_ROWS': 1}
                    """
                return partition
コード例 #26
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
 def test_insert_part_raw(self):
     """
     假如要给与Jim Jones同一公司的所有顾客发送一封信件。这个查询要求
     首先找出JimJones工作的公司,然后找出在该公司工作的顾客。下面是
     解决此问题的一种方法:
     """
     with connection.cursor() as cursor:
         cursor.execute("""
             INSERT INTO Customers(
                 cust_id, 
                 cust_name, 
                 cust_address, 
                 cust_city, 
                 cust_state, 
                 cust_zip, 
                 cust_country
             )
             VALUES (
                 1000000006,
                 'Toy Land',
                 '123 Any Street',
                 'New York',
                 'NY',
                 '11111',
                 'USA'
             );
         """)
         """
         注意:省略列
             如果表的定义允许,则可以在INSERT操作中省略某些列。省略的列 
             必须满足以下某个条件.
             - 该列定义为允许NULL值(无值或空值)。
             - 在表定义中给出默认值。这表示如果不给出值,将使用默认值。
         注意:省略所需的值
             如果表中不允许有NULL值或者默认值,这时却省略了表中的值,
             DBMS就会产生生错误消息,相应的行不能成功插入。
         """
         cursor.execute("""
         SELECT *
         FROM Customers
         WHERE cust_id = 1000000006;
         """)
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #27
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
    def test_arithmetic_calculation(self):
        """
        SQL算术操作符 +(加), -(减), *(乘), /(除), DIV(除后结果取整), %(除后结果取余)

        SELECT语句为测试,检验函数和计算提供了很好的方法.虽然SELECT通常用于从表中检索数据,
        但是省略了FROM子句后就是简单地访问和处理表达式,例如SELECT 3 * 2;将返回6,
        SELECT Trim('  ABC ');将返回ABC;SELECT Curdate();使用Curdate()函数返回当
        前日期和时间.
        """
        with connection.cursor() as cursor:
            cursor.execute("""
                SELECT prod_id, quantity, item_price, quantity DIV item_price AS total
                FROM OrderItems
                WHERE order_num = 20008;
            """)
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
コード例 #28
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
    def test_sort_data(self):
        """
        子句:
        SQL语句由子句构成,有些子句是必需的,有些则是可选的.一个子句通常由一个关键字加上所提供的数据组成.
        子句的例子有SELECT语句的FROM子句.

        注意: ORDER BY 子句的位置
        在指定一条ORDER BY 子句时,应该保证它是SELECT 语句中最后一条子句.如果它不是最后的子句, 报错

        提示: 通过非选择列进行排序
        通常,ORDER BY 子句中使用的列将是为显示而选择的列.但是,实际上并不是一定要这样,用非见搜的列排序
        数据是完全ok的.
        """
        with connection.cursor() as cursor:
            cursor.execute("SELECT prod_name FROM Products ORDER BY prod_name;")
            for result in dictfetchall(cursor):  # 读取所有
                print(result)
                """
コード例 #29
0
ファイル: tests.py プロジェクト: MeGustas-5427/SQL_Tutorials
 def test_natural_join(self):
     with connection.cursor() as cursor:
         cursor.execute("""
             SELECT C.*, O.order_num, O.order_date, OI.prod_id, OI.quantity, OI.item_price 
             FROM Customers C
             INNER JOIN Orders O on C.cust_id = O.cust_id
             INNER JOIN OrderItems OI on O.order_num = OI.order_num
             WHERE OI.prod_id = 'RGAN01'
             """)
         """
         分析 ▼
             在这个例子中,通配符只对第一个表使用。所有其他列明确列出,所以 
             没有重复的列被检索出来。
             事实上,我们迄今为止建立的每个内联结都是自然联结,很可能永远都 
             不会用到不是自然联结的内联结。
         """
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """
コード例 #30
0
ファイル: tests.py プロジェクト: lower001/SQL_Tutorials
 def test_in_operator(self):
     with connection.cursor() as cursor:
         cursor.execute("""
             SELECT 
             vend_id, prod_name
             FROM 
             Products 
             WHERE
             vend_id IN ('DLL01', 'BRS01');
             """)
         """
         IN操作符完成了与OR相同的功能, 为何要使用IN操作符?
         1. IN操作付一般比一组OR操作符执行得更快.
         2. 在有很多合法选项时,IN操作符的语法更清楚, 更直观.
         3. 在与其他AND和OR操作符组合使用IN时,求值顺序更容易管理.
         4. IN得最大优点是可以包含其他SELECT语句,能够更动态地建立WHERE子句. 第11课会介绍.
         """
         for result in dictfetchall(cursor):  # 读取所有
             print(result)
             """